Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomN Structured version   Visualization version   GIF version

Theorem cmtcomN 36421
Description: Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 29354 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b 𝐵 = (Base‘𝐾)
cmtcom.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtcomN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))

Proof of Theorem cmtcomN
StepHypRef Expression
1 cmtcom.b . . 3 𝐵 = (Base‘𝐾)
2 cmtcom.c . . 3 𝐶 = (cm‘𝐾)
31, 2cmtcomlemN 36420 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
41, 2cmtcomlemN 36420 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑋𝐶𝑌))
543com23 1122 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑋𝐶𝑌))
63, 5impbid 214 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5042  cfv 6331  Basecbs 16462  cmccmtN 36345  OMLcoml 36347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-lat 17635  df-oposet 36348  df-cmtN 36349  df-ol 36350  df-oml 36351
This theorem is referenced by:  cmt3N  36423  cmtbr3N  36426  omlmod1i2N  36432
  Copyright terms: Public domain W3C validator