| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmtcomN | Structured version Visualization version GIF version | ||
| Description: Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 31564 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmtcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| cmtcom.c | ⊢ 𝐶 = (cm‘𝐾) |
| Ref | Expression |
|---|---|
| cmtcomN | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cmtcom.c | . . 3 ⊢ 𝐶 = (cm‘𝐾) | |
| 3 | 1, 2 | cmtcomlemN 39287 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑌𝐶𝑋)) |
| 4 | 1, 2 | cmtcomlemN 39287 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 → 𝑋𝐶𝑌)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 → 𝑋𝐶𝑌)) |
| 6 | 3, 5 | impbid 212 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 cmccmtN 39212 OMLcoml 39214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18195 df-poset 18214 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-lat 18333 df-oposet 39215 df-cmtN 39216 df-ol 39217 df-oml 39218 |
| This theorem is referenced by: cmt3N 39290 cmtbr3N 39293 omlmod1i2N 39299 |
| Copyright terms: Public domain | W3C validator |