Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cmcmi | Structured version Visualization version GIF version |
Description: Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cmcmi | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | pjoml2.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | cmcmlem 29703 | . 2 ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) |
4 | 2, 1 | cmcmlem 29703 | . 2 ⊢ (𝐵 𝐶ℋ 𝐴 → 𝐴 𝐶ℋ 𝐵) |
5 | 3, 4 | impbii 212 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2112 class class class wbr 5069 Cℋ cch 29041 𝐶ℋ ccm 29048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9285 ax-cc 10078 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 ax-addf 10837 ax-mulf 10838 ax-hilex 29111 ax-hfvadd 29112 ax-hvcom 29113 ax-hvass 29114 ax-hv0cl 29115 ax-hvaddid 29116 ax-hfvmul 29117 ax-hvmulid 29118 ax-hvmulass 29119 ax-hvdistr1 29120 ax-hvdistr2 29121 ax-hvmul0 29122 ax-hfi 29191 ax-his1 29194 ax-his2 29195 ax-his3 29196 ax-his4 29197 ax-hcompl 29314 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-2o 8226 df-oadd 8229 df-omul 8230 df-er 8414 df-map 8533 df-pm 8534 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9015 df-fi 9056 df-sup 9087 df-inf 9088 df-oi 9155 df-card 9584 df-acn 9587 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-div 11519 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-q 12574 df-rp 12616 df-xneg 12733 df-xadd 12734 df-xmul 12735 df-ioo 12968 df-ico 12970 df-icc 12971 df-fz 13125 df-fzo 13268 df-fl 13396 df-seq 13606 df-exp 13667 df-hash 13929 df-cj 14694 df-re 14695 df-im 14696 df-sqrt 14830 df-abs 14831 df-clim 15081 df-rlim 15082 df-sum 15282 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-starv 16849 df-sca 16850 df-vsca 16851 df-ip 16852 df-tset 16853 df-ple 16854 df-ds 16856 df-unif 16857 df-hom 16858 df-cco 16859 df-rest 16959 df-topn 16960 df-0g 16978 df-gsum 16979 df-topgen 16980 df-pt 16981 df-prds 16984 df-xrs 17039 df-qtop 17044 df-imas 17045 df-xps 17047 df-mre 17121 df-mrc 17122 df-acs 17124 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-mulg 18521 df-cntz 18743 df-cmn 19204 df-psmet 20387 df-xmet 20388 df-met 20389 df-bl 20390 df-mopn 20391 df-fbas 20392 df-fg 20393 df-cnfld 20396 df-top 21822 df-topon 21839 df-topsp 21861 df-bases 21874 df-cld 21947 df-ntr 21948 df-cls 21949 df-nei 22026 df-cn 22155 df-cnp 22156 df-lm 22157 df-haus 22243 df-tx 22490 df-hmeo 22683 df-fil 22774 df-fm 22866 df-flim 22867 df-flf 22868 df-xms 23249 df-ms 23250 df-tms 23251 df-cfil 24183 df-cau 24184 df-cmet 24185 df-grpo 28605 df-gid 28606 df-ginv 28607 df-gdiv 28608 df-ablo 28657 df-vc 28671 df-nv 28704 df-va 28707 df-ba 28708 df-sm 28709 df-0v 28710 df-vs 28711 df-nmcv 28712 df-ims 28713 df-dip 28813 df-ssp 28834 df-ph 28925 df-cbn 28975 df-hnorm 29080 df-hba 29081 df-hvsub 29083 df-hlim 29084 df-hcau 29085 df-sh 29319 df-ch 29333 df-oc 29364 df-ch0 29365 df-shs 29420 df-chj 29422 df-cm 29695 |
This theorem is referenced by: cmcm3i 29706 cmcmii 29709 cmbr3i 29712 cmcm 29726 pjclem2 30308 |
Copyright terms: Public domain | W3C validator |