MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnei Structured version   Visualization version   GIF version

Theorem cnnei 23202
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x 𝑋 = 𝐽
cnnei.y 𝑌 = 𝐾
Assertion
Ref Expression
cnnei ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Distinct variable groups:   𝑣,𝑝,𝑤,𝐹   𝐽,𝑝,𝑣,𝑤   𝐾,𝑝,𝑣,𝑤   𝑋,𝑝,𝑣,𝑤   𝑌,𝑝,𝑣,𝑤

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6 𝑋 = 𝐽
21toptopon 22837 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 cnnei.y . . . . . 6 𝑌 = 𝐾
43toptopon 22837 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
52, 4anbi12i 628 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
6 cncnp 23200 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))))
76baibd 539 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
85, 7sylanb 581 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
95anbi1i 624 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ↔ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
10 iscnp4 23183 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
11103expa 1118 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
1211baibd 539 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1312an32s 652 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
149, 13sylanb 581 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1514ralbidva 3154 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
168, 15bitrd 279 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
17163impa 1109 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911  {csn 4585   cuni 4867  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  Topctop 22813  TopOnctopon 22830  neicnei 23017   Cn ccn 23144   CnP ccnp 23145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-top 22814  df-topon 22831  df-ntr 22940  df-nei 23018  df-cn 23147  df-cnp 23148
This theorem is referenced by:  cnextcn  23987  cnextfres1  23988
  Copyright terms: Public domain W3C validator