MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnei Structured version   Visualization version   GIF version

Theorem cnnei 23006
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x 𝑋 = βˆͺ 𝐽
cnnei.y π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
cnnei ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘ ∈ 𝑋 βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
Distinct variable groups:   𝑣,𝑝,𝑀,𝐹   𝐽,𝑝,𝑣,𝑀   𝐾,𝑝,𝑣,𝑀   𝑋,𝑝,𝑣,𝑀   π‘Œ,𝑝,𝑣,𝑀

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6 𝑋 = βˆͺ 𝐽
21toptopon 22639 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 cnnei.y . . . . . 6 π‘Œ = βˆͺ 𝐾
43toptopon 22639 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
52, 4anbi12i 625 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)))
6 cncnp 23004 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘))))
76baibd 538 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘)))
85, 7sylanb 579 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘)))
95anbi1i 622 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ↔ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
10 iscnp4 22987 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑝 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀)))
11103expa 1116 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑝 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀)))
1211baibd 538 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑝 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
1312an32s 648 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑝 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
149, 13sylanb 579 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑝 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
1514ralbidva 3173 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘) ↔ βˆ€π‘ ∈ 𝑋 βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
168, 15bitrd 278 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘ ∈ 𝑋 βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
17163impa 1108 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘ ∈ 𝑋 βˆ€π‘€ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘)})βˆƒπ‘£ ∈ ((neiβ€˜π½)β€˜{𝑝})(𝐹 β€œ 𝑣) βŠ† 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068   βŠ† wss 3947  {csn 4627  βˆͺ cuni 4907   β€œ cima 5678  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  Topctop 22615  TopOnctopon 22632  neicnei 22821   Cn ccn 22948   CnP ccnp 22949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-topgen 17393  df-top 22616  df-topon 22633  df-ntr 22744  df-nei 22822  df-cn 22951  df-cnp 22952
This theorem is referenced by:  cnextcn  23791  cnextfres1  23792
  Copyright terms: Public domain W3C validator