MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnei Structured version   Visualization version   GIF version

Theorem cnnei 23306
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x 𝑋 = 𝐽
cnnei.y 𝑌 = 𝐾
Assertion
Ref Expression
cnnei ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Distinct variable groups:   𝑣,𝑝,𝑤,𝐹   𝐽,𝑝,𝑣,𝑤   𝐾,𝑝,𝑣,𝑤   𝑋,𝑝,𝑣,𝑤   𝑌,𝑝,𝑣,𝑤

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6 𝑋 = 𝐽
21toptopon 22939 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 cnnei.y . . . . . 6 𝑌 = 𝐾
43toptopon 22939 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
52, 4anbi12i 628 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
6 cncnp 23304 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))))
76baibd 539 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
85, 7sylanb 581 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
95anbi1i 624 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ↔ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
10 iscnp4 23287 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
11103expa 1117 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
1211baibd 539 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1312an32s 652 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
149, 13sylanb 581 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1514ralbidva 3174 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
168, 15bitrd 279 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
17163impa 1109 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  {csn 4631   cuni 4912  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  Topctop 22915  TopOnctopon 22932  neicnei 23121   Cn ccn 23248   CnP ccnp 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-topgen 17490  df-top 22916  df-topon 22933  df-ntr 23044  df-nei 23122  df-cn 23251  df-cnp 23252
This theorem is referenced by:  cnextcn  24091  cnextfres1  24092
  Copyright terms: Public domain W3C validator