| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnnei | Structured version Visualization version GIF version | ||
| Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.) |
| Ref | Expression |
|---|---|
| cnnei.x | ⊢ 𝑋 = ∪ 𝐽 |
| cnnei.y | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnnei | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnei.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22832 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | cnnei.y | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 4 | 3 | toptopon 22832 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 5 | 2, 4 | anbi12i 628 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
| 6 | cncnp 23195 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑝 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))) | |
| 7 | 6 | baibd 539 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))) |
| 8 | 5, 7 | sylanb 581 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))) |
| 9 | 5 | anbi1i 624 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋⟶𝑌) ↔ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 10 | iscnp4 23178 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑝 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤))) | |
| 11 | 10 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤))) |
| 12 | 11 | baibd 539 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 13 | 12 | an32s 652 | . . . . 5 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑝 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 14 | 9, 13 | sylanb 581 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑝 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 15 | 14 | ralbidva 3153 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑝 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 16 | 8, 15 | bitrd 279 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 17 | 16 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 {csn 4573 ∪ cuni 4856 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Topctop 22808 TopOnctopon 22825 neicnei 23012 Cn ccn 23139 CnP ccnp 23140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17347 df-top 22809 df-topon 22826 df-ntr 22935 df-nei 23013 df-cn 23142 df-cnp 23143 |
| This theorem is referenced by: cnextcn 23982 cnextfres1 23983 |
| Copyright terms: Public domain | W3C validator |