| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2c | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt2c.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| cnmpt2c.p | ⊢ (𝜑 → 𝑃 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| cnmpt2c | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑃 = 𝑃) | |
| 2 | 1 | mpompt 7460 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) |
| 3 | cnmpt21.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | cnmpt21.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 5 | txtopon 23507 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | cnmpt2c.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
| 8 | cnmpt2c.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑍) | |
| 9 | 6, 7, 8 | cnmptc 23578 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 10 | 2, 9 | eqeltrrid 2836 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 TopOnctopon 22826 Cn ccn 23140 ×t ctx 23476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17347 df-top 22810 df-topon 22827 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 |
| This theorem is referenced by: cnrehmeo 24879 cnrehmeoOLD 24880 pcopt 24950 pcopt2 24951 vmcn 30677 dipcn 30698 cvxsconn 35285 |
| Copyright terms: Public domain | W3C validator |