MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2c Structured version   Visualization version   GIF version

Theorem cnmpt2c 23586
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2c.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt2c.p (𝜑𝑃𝑍)
Assertion
Ref Expression
cnmpt2c (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑃 = 𝑃)
21mpompt 7460 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥𝑋, 𝑦𝑌𝑃)
3 cnmpt21.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt21.k . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 txtopon 23507 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
63, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
7 cnmpt2c.l . . 3 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt2c.p . . 3 (𝜑𝑃𝑍)
96, 7, 8cnmptc 23578 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
102, 9eqeltrrid 2836 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4582  cmpt 5172   × cxp 5614  cfv 6481  (class class class)co 7346  cmpo 7348  TopOnctopon 22826   Cn ccn 23140   ×t ctx 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-topgen 17347  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478
This theorem is referenced by:  cnrehmeo  24879  cnrehmeoOLD  24880  pcopt  24950  pcopt2  24951  vmcn  30677  dipcn  30698  cvxsconn  35285
  Copyright terms: Public domain W3C validator