| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2c | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt2c.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| cnmpt2c.p | ⊢ (𝜑 → 𝑃 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| cnmpt2c | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑃 = 𝑃) | |
| 2 | 1 | mpompt 7467 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) |
| 3 | cnmpt21.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | cnmpt21.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 5 | txtopon 23494 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | cnmpt2c.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
| 8 | cnmpt2c.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑍) | |
| 9 | 6, 7, 8 | cnmptc 23565 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 10 | 2, 9 | eqeltrrid 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 TopOnctopon 22813 Cn ccn 23127 ×t ctx 23463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 |
| This theorem is referenced by: cnrehmeo 24867 cnrehmeoOLD 24868 pcopt 24938 pcopt2 24939 vmcn 30661 dipcn 30682 cvxsconn 35215 |
| Copyright terms: Public domain | W3C validator |