MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2c Structured version   Visualization version   GIF version

Theorem cnmpt2c 23173
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
cnmpt2c.l (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘))
cnmpt2c.p (πœ‘ β†’ 𝑃 ∈ 𝑍)
Assertion
Ref Expression
cnmpt2c (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑃) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
Distinct variable groups:   π‘₯,𝑦,𝐿   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝑃,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,𝑍,𝑦
Allowed substitution hints:   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2733 . . 3 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ 𝑃 = 𝑃)
21mpompt 7521 . 2 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ 𝑃) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑃)
3 cnmpt21.j . . . 4 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
4 cnmpt21.k . . . 4 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
5 txtopon 23094 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
63, 4, 5syl2anc 584 . . 3 (πœ‘ β†’ (𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
7 cnmpt2c.l . . 3 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘))
8 cnmpt2c.p . . 3 (πœ‘ β†’ 𝑃 ∈ 𝑍)
96, 7, 8cnmptc 23165 . 2 (πœ‘ β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ 𝑃) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
102, 9eqeltrrid 2838 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑃) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4634   ↦ cmpt 5231   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  TopOnctopon 22411   Cn ccn 22727   Γ—t ctx 23063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cn 22730  df-cnp 22731  df-tx 23065
This theorem is referenced by:  cnrehmeo  24468  pcopt  24537  pcopt2  24538  vmcn  29947  dipcn  29968  cvxsconn  34229  gg-cnrehmeo  35166
  Copyright terms: Public domain W3C validator