| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5693 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
| 5 | cnconst2 23203 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
| 7 | 1, 6 | eqeltrrid 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4585 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 TopOnctopon 22830 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-topgen 17382 df-top 22814 df-topon 22831 df-cn 23147 df-cnp 23148 |
| This theorem is referenced by: cnmpt2c 23590 xkoinjcn 23607 txconn 23609 imasnopn 23610 imasncld 23611 imasncls 23612 istgp2 24011 tmdmulg 24012 tmdgsum 24015 tmdlactcn 24022 clsnsg 24030 tgpt0 24039 tlmtgp 24116 nmcn 24766 fsumcn 24794 expcn 24796 divccn 24797 expcnOLD 24798 divccnOLD 24799 cncfmptc 24838 cdivcncf 24847 iirevcn 24857 iihalf1cn 24859 iihalf1cnOLD 24860 iihalf2cn 24862 iihalf2cnOLD 24863 icchmeo 24871 icchmeoOLD 24872 evth 24891 evth2 24892 pcocn 24950 pcopt 24955 pcopt2 24956 pcoass 24957 csscld 25182 clsocv 25183 dvcnvlem 25913 plycn 26199 plycnOLD 26200 psercn2 26365 psercn2OLD 26366 resqrtcn 26692 sqrtcn 26693 atansopn 26875 efrlim 26912 efrlimOLD 26913 ipasslem7 30815 occllem 31282 rmulccn 33911 cxpcncf1 34579 txsconnlem 35220 cvxpconn 35222 cvmlift2lem2 35284 cvmlift2lem3 35285 cvmliftphtlem 35297 sinccvglem 35652 knoppcnlem10 36483 areacirclem2 37696 fprodcn 45591 |
| Copyright terms: Public domain | W3C validator |