Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
Ref | Expression |
---|---|
cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5649 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
5 | cnconst2 22434 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
6 | 2, 3, 4, 5 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
7 | 1, 6 | eqeltrrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-topgen 17154 df-top 22043 df-topon 22060 df-cn 22378 df-cnp 22379 |
This theorem is referenced by: cnmpt2c 22821 xkoinjcn 22838 txconn 22840 imasnopn 22841 imasncld 22842 imasncls 22843 istgp2 23242 tmdmulg 23243 tmdgsum 23246 tmdlactcn 23253 clsnsg 23261 tgpt0 23270 tlmtgp 23347 nmcn 24007 fsumcn 24033 expcn 24035 divccn 24036 cncfmptc 24075 cdivcncf 24084 iirevcn 24093 iihalf1cn 24095 iihalf2cn 24097 icchmeo 24104 evth 24122 evth2 24123 pcocn 24180 pcopt 24185 pcopt2 24186 pcoass 24187 csscld 24413 clsocv 24414 dvcnvlem 25140 plycn 25422 psercn2 25582 resqrtcn 25902 sqrtcn 25903 atansopn 26082 efrlim 26119 ipasslem7 29198 occllem 29665 rmulccn 31878 cxpcncf1 32575 txsconnlem 33202 cvxpconn 33204 cvmlift2lem2 33266 cvmlift2lem3 33267 cvmliftphtlem 33279 sinccvglem 33630 knoppcnlem10 34682 areacirclem2 35866 fprodcn 43141 |
Copyright terms: Public domain | W3C validator |