| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5716 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
| 5 | cnconst2 23219 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
| 7 | 1, 6 | eqeltrrid 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4601 ↦ cmpt 5201 × cxp 5652 ‘cfv 6530 (class class class)co 7403 TopOnctopon 22846 Cn ccn 23160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 df-topgen 17455 df-top 22830 df-topon 22847 df-cn 23163 df-cnp 23164 |
| This theorem is referenced by: cnmpt2c 23606 xkoinjcn 23623 txconn 23625 imasnopn 23626 imasncld 23627 imasncls 23628 istgp2 24027 tmdmulg 24028 tmdgsum 24031 tmdlactcn 24038 clsnsg 24046 tgpt0 24055 tlmtgp 24132 nmcn 24782 fsumcn 24810 expcn 24812 divccn 24813 expcnOLD 24814 divccnOLD 24815 cncfmptc 24854 cdivcncf 24863 iirevcn 24873 iihalf1cn 24875 iihalf1cnOLD 24876 iihalf2cn 24878 iihalf2cnOLD 24879 icchmeo 24887 icchmeoOLD 24888 evth 24907 evth2 24908 pcocn 24966 pcopt 24971 pcopt2 24972 pcoass 24973 csscld 25199 clsocv 25200 dvcnvlem 25930 plycn 26216 plycnOLD 26217 psercn2 26382 psercn2OLD 26383 resqrtcn 26709 sqrtcn 26710 atansopn 26892 efrlim 26929 efrlimOLD 26930 ipasslem7 30763 occllem 31230 rmulccn 33905 cxpcncf1 34573 txsconnlem 35208 cvxpconn 35210 cvmlift2lem2 35272 cvmlift2lem3 35273 cvmliftphtlem 35285 sinccvglem 35640 knoppcnlem10 36466 areacirclem2 37679 fprodcn 45577 |
| Copyright terms: Public domain | W3C validator |