| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5703 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
| 5 | cnconst2 23177 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
| 7 | 1, 6 | eqeltrrid 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4592 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 TopOnctopon 22804 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-topgen 17413 df-top 22788 df-topon 22805 df-cn 23121 df-cnp 23122 |
| This theorem is referenced by: cnmpt2c 23564 xkoinjcn 23581 txconn 23583 imasnopn 23584 imasncld 23585 imasncls 23586 istgp2 23985 tmdmulg 23986 tmdgsum 23989 tmdlactcn 23996 clsnsg 24004 tgpt0 24013 tlmtgp 24090 nmcn 24740 fsumcn 24768 expcn 24770 divccn 24771 expcnOLD 24772 divccnOLD 24773 cncfmptc 24812 cdivcncf 24821 iirevcn 24831 iihalf1cn 24833 iihalf1cnOLD 24834 iihalf2cn 24836 iihalf2cnOLD 24837 icchmeo 24845 icchmeoOLD 24846 evth 24865 evth2 24866 pcocn 24924 pcopt 24929 pcopt2 24930 pcoass 24931 csscld 25156 clsocv 25157 dvcnvlem 25887 plycn 26173 plycnOLD 26174 psercn2 26339 psercn2OLD 26340 resqrtcn 26666 sqrtcn 26667 atansopn 26849 efrlim 26886 efrlimOLD 26887 ipasslem7 30772 occllem 31239 rmulccn 33925 cxpcncf1 34593 txsconnlem 35234 cvxpconn 35236 cvmlift2lem2 35298 cvmlift2lem3 35299 cvmliftphtlem 35311 sinccvglem 35666 knoppcnlem10 36497 areacirclem2 37710 fprodcn 45605 |
| Copyright terms: Public domain | W3C validator |