| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5676 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
| 5 | cnconst2 23198 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
| 7 | 1, 6 | eqeltrrid 2836 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {csn 4573 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17347 df-top 22809 df-topon 22826 df-cn 23142 df-cnp 23143 |
| This theorem is referenced by: cnmpt2c 23585 xkoinjcn 23602 txconn 23604 imasnopn 23605 imasncld 23606 imasncls 23607 istgp2 24006 tmdmulg 24007 tmdgsum 24010 tmdlactcn 24017 clsnsg 24025 tgpt0 24034 tlmtgp 24111 nmcn 24760 fsumcn 24788 expcn 24790 divccn 24791 expcnOLD 24792 divccnOLD 24793 cncfmptc 24832 cdivcncf 24841 iirevcn 24851 iihalf1cn 24853 iihalf1cnOLD 24854 iihalf2cn 24856 iihalf2cnOLD 24857 icchmeo 24865 icchmeoOLD 24866 evth 24885 evth2 24886 pcocn 24944 pcopt 24949 pcopt2 24950 pcoass 24951 csscld 25176 clsocv 25177 dvcnvlem 25907 plycn 26193 plycnOLD 26194 psercn2 26359 psercn2OLD 26360 resqrtcn 26686 sqrtcn 26687 atansopn 26869 efrlim 26906 efrlimOLD 26907 ipasslem7 30816 occllem 31283 rmulccn 33941 cxpcncf1 34608 txsconnlem 35284 cvxpconn 35286 cvmlift2lem2 35348 cvmlift2lem3 35349 cvmliftphtlem 35361 sinccvglem 35716 knoppcnlem10 36546 areacirclem2 37759 fprodcn 45710 |
| Copyright terms: Public domain | W3C validator |