MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptc Structured version   Visualization version   GIF version

Theorem cnmptc 23598
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptc.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptc.p (𝜑𝑃𝑌)
Assertion
Ref Expression
cnmptc (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝑌   𝑥,𝐾   𝑥,𝑃

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 5716 . 2 (𝑋 × {𝑃}) = (𝑥𝑋𝑃)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmptc.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmptc.p . . 3 (𝜑𝑃𝑌)
5 cnconst2 23219 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
62, 3, 4, 5syl3anc 1373 . 2 (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
71, 6eqeltrrid 2839 1 (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {csn 4601  cmpt 5201   × cxp 5652  cfv 6530  (class class class)co 7403  TopOnctopon 22846   Cn ccn 23160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-topgen 17455  df-top 22830  df-topon 22847  df-cn 23163  df-cnp 23164
This theorem is referenced by:  cnmpt2c  23606  xkoinjcn  23623  txconn  23625  imasnopn  23626  imasncld  23627  imasncls  23628  istgp2  24027  tmdmulg  24028  tmdgsum  24031  tmdlactcn  24038  clsnsg  24046  tgpt0  24055  tlmtgp  24132  nmcn  24782  fsumcn  24810  expcn  24812  divccn  24813  expcnOLD  24814  divccnOLD  24815  cncfmptc  24854  cdivcncf  24863  iirevcn  24873  iihalf1cn  24875  iihalf1cnOLD  24876  iihalf2cn  24878  iihalf2cnOLD  24879  icchmeo  24887  icchmeoOLD  24888  evth  24907  evth2  24908  pcocn  24966  pcopt  24971  pcopt2  24972  pcoass  24973  csscld  25199  clsocv  25200  dvcnvlem  25930  plycn  26216  plycnOLD  26217  psercn2  26382  psercn2OLD  26383  resqrtcn  26709  sqrtcn  26710  atansopn  26892  efrlim  26929  efrlimOLD  26930  ipasslem7  30763  occllem  31230  rmulccn  33905  cxpcncf1  34573  txsconnlem  35208  cvxpconn  35210  cvmlift2lem2  35272  cvmlift2lem3  35273  cvmliftphtlem  35285  sinccvglem  35640  knoppcnlem10  36466  areacirclem2  37679  fprodcn  45577
  Copyright terms: Public domain W3C validator