![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmptc.k | β’ (π β πΎ β (TopOnβπ)) |
cnmptc.p | β’ (π β π β π) |
Ref | Expression |
---|---|
cnmptc | β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5740 | . 2 β’ (π Γ {π}) = (π₯ β π β¦ π) | |
2 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
3 | cnmptc.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
4 | cnmptc.p | . . 3 β’ (π β π β π) | |
5 | cnconst2 23200 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π β π) β (π Γ {π}) β (π½ Cn πΎ)) | |
6 | 2, 3, 4, 5 | syl3anc 1369 | . 2 β’ (π β (π Γ {π}) β (π½ Cn πΎ)) |
7 | 1, 6 | eqeltrrid 2834 | 1 β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2099 {csn 4629 β¦ cmpt 5231 Γ cxp 5676 βcfv 6548 (class class class)co 7420 TopOnctopon 22825 Cn ccn 23141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8847 df-topgen 17425 df-top 22809 df-topon 22826 df-cn 23144 df-cnp 23145 |
This theorem is referenced by: cnmpt2c 23587 xkoinjcn 23604 txconn 23606 imasnopn 23607 imasncld 23608 imasncls 23609 istgp2 24008 tmdmulg 24009 tmdgsum 24012 tmdlactcn 24019 clsnsg 24027 tgpt0 24036 tlmtgp 24113 nmcn 24773 fsumcn 24801 expcn 24803 divccn 24804 expcnOLD 24805 divccnOLD 24806 cncfmptc 24845 cdivcncf 24854 iirevcn 24864 iihalf1cn 24866 iihalf1cnOLD 24867 iihalf2cn 24869 iihalf2cnOLD 24870 icchmeo 24878 icchmeoOLD 24879 evth 24898 evth2 24899 pcocn 24957 pcopt 24962 pcopt2 24963 pcoass 24964 csscld 25190 clsocv 25191 dvcnvlem 25921 plycn 26208 plycnOLD 26209 psercn2 26372 psercn2OLD 26373 resqrtcn 26697 sqrtcn 26698 atansopn 26877 efrlim 26914 efrlimOLD 26915 ipasslem7 30659 occllem 31126 rmulccn 33529 cxpcncf1 34227 txsconnlem 34850 cvxpconn 34852 cvmlift2lem2 34914 cvmlift2lem3 34915 cvmliftphtlem 34927 sinccvglem 35276 knoppcnlem10 35977 areacirclem2 37182 fprodcn 44988 |
Copyright terms: Public domain | W3C validator |