![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmptc.k | β’ (π β πΎ β (TopOnβπ)) |
cnmptc.p | β’ (π β π β π) |
Ref | Expression |
---|---|
cnmptc | β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5738 | . 2 β’ (π Γ {π}) = (π₯ β π β¦ π) | |
2 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
3 | cnmptc.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
4 | cnmptc.p | . . 3 β’ (π β π β π) | |
5 | cnconst2 22786 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π β π) β (π Γ {π}) β (π½ Cn πΎ)) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . 2 β’ (π β (π Γ {π}) β (π½ Cn πΎ)) |
7 | 1, 6 | eqeltrrid 2838 | 1 β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 {csn 4628 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 (class class class)co 7408 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-topgen 17388 df-top 22395 df-topon 22412 df-cn 22730 df-cnp 22731 |
This theorem is referenced by: cnmpt2c 23173 xkoinjcn 23190 txconn 23192 imasnopn 23193 imasncld 23194 imasncls 23195 istgp2 23594 tmdmulg 23595 tmdgsum 23598 tmdlactcn 23605 clsnsg 23613 tgpt0 23622 tlmtgp 23699 nmcn 24359 fsumcn 24385 expcn 24387 divccn 24388 cncfmptc 24427 cdivcncf 24436 iirevcn 24445 iihalf1cn 24447 iihalf2cn 24449 icchmeo 24456 evth 24474 evth2 24475 pcocn 24532 pcopt 24537 pcopt2 24538 pcoass 24539 csscld 24765 clsocv 24766 dvcnvlem 25492 plycn 25774 psercn2 25934 resqrtcn 26254 sqrtcn 26255 atansopn 26434 efrlim 26471 ipasslem7 30084 occllem 30551 rmulccn 32903 cxpcncf1 33602 txsconnlem 34226 cvxpconn 34228 cvmlift2lem2 34290 cvmlift2lem3 34291 cvmliftphtlem 34303 sinccvglem 34652 gg-expcn 35159 gg-divccn 35160 gg-iihalf1cn 35162 gg-iihalf2cn 35163 gg-icchmeo 35165 gg-plycn 35172 gg-psercn2 35173 gg-rmulccn 35174 knoppcnlem10 35373 areacirclem2 36572 fprodcn 44306 |
Copyright terms: Public domain | W3C validator |