MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptc Structured version   Visualization version   GIF version

Theorem cnmptc 23582
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptc.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptc.p (𝜑𝑃𝑌)
Assertion
Ref Expression
cnmptc (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝑌   𝑥,𝐾   𝑥,𝑃

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 5693 . 2 (𝑋 × {𝑃}) = (𝑥𝑋𝑃)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmptc.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmptc.p . . 3 (𝜑𝑃𝑌)
5 cnconst2 23203 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
62, 3, 4, 5syl3anc 1373 . 2 (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
71, 6eqeltrrid 2833 1 (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {csn 4585  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  TopOnctopon 22830   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-top 22814  df-topon 22831  df-cn 23147  df-cnp 23148
This theorem is referenced by:  cnmpt2c  23590  xkoinjcn  23607  txconn  23609  imasnopn  23610  imasncld  23611  imasncls  23612  istgp2  24011  tmdmulg  24012  tmdgsum  24015  tmdlactcn  24022  clsnsg  24030  tgpt0  24039  tlmtgp  24116  nmcn  24766  fsumcn  24794  expcn  24796  divccn  24797  expcnOLD  24798  divccnOLD  24799  cncfmptc  24838  cdivcncf  24847  iirevcn  24857  iihalf1cn  24859  iihalf1cnOLD  24860  iihalf2cn  24862  iihalf2cnOLD  24863  icchmeo  24871  icchmeoOLD  24872  evth  24891  evth2  24892  pcocn  24950  pcopt  24955  pcopt2  24956  pcoass  24957  csscld  25182  clsocv  25183  dvcnvlem  25913  plycn  26199  plycnOLD  26200  psercn2  26365  psercn2OLD  26366  resqrtcn  26692  sqrtcn  26693  atansopn  26875  efrlim  26912  efrlimOLD  26913  ipasslem7  30815  occllem  31282  rmulccn  33911  cxpcncf1  34579  txsconnlem  35220  cvxpconn  35222  cvmlift2lem2  35284  cvmlift2lem3  35285  cvmliftphtlem  35297  sinccvglem  35652  knoppcnlem10  36483  areacirclem2  37696  fprodcn  45591
  Copyright terms: Public domain W3C validator