| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version | ||
| Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptc.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptc.p | ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| cnmptc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5681 | . 2 ⊢ (𝑋 × {𝑃}) = (𝑥 ∈ 𝑋 ↦ 𝑃) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | cnmptc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑌) | |
| 5 | cnconst2 23168 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾)) |
| 7 | 1, 6 | eqeltrrid 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4577 ↦ cmpt 5173 × cxp 5617 ‘cfv 6482 (class class class)co 7349 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-topgen 17347 df-top 22779 df-topon 22796 df-cn 23112 df-cnp 23113 |
| This theorem is referenced by: cnmpt2c 23555 xkoinjcn 23572 txconn 23574 imasnopn 23575 imasncld 23576 imasncls 23577 istgp2 23976 tmdmulg 23977 tmdgsum 23980 tmdlactcn 23987 clsnsg 23995 tgpt0 24004 tlmtgp 24081 nmcn 24731 fsumcn 24759 expcn 24761 divccn 24762 expcnOLD 24763 divccnOLD 24764 cncfmptc 24803 cdivcncf 24812 iirevcn 24822 iihalf1cn 24824 iihalf1cnOLD 24825 iihalf2cn 24827 iihalf2cnOLD 24828 icchmeo 24836 icchmeoOLD 24837 evth 24856 evth2 24857 pcocn 24915 pcopt 24920 pcopt2 24921 pcoass 24922 csscld 25147 clsocv 25148 dvcnvlem 25878 plycn 26164 plycnOLD 26165 psercn2 26330 psercn2OLD 26331 resqrtcn 26657 sqrtcn 26658 atansopn 26840 efrlim 26877 efrlimOLD 26878 ipasslem7 30780 occllem 31247 rmulccn 33895 cxpcncf1 34563 txsconnlem 35217 cvxpconn 35219 cvmlift2lem2 35281 cvmlift2lem3 35282 cvmliftphtlem 35294 sinccvglem 35649 knoppcnlem10 36480 areacirclem2 37693 fprodcn 45585 |
| Copyright terms: Public domain | W3C validator |