MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptc Structured version   Visualization version   GIF version

Theorem cnmptc 23577
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptc.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptc.p (𝜑𝑃𝑌)
Assertion
Ref Expression
cnmptc (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝑌   𝑥,𝐾   𝑥,𝑃

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 5676 . 2 (𝑋 × {𝑃}) = (𝑥𝑋𝑃)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmptc.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmptc.p . . 3 (𝜑𝑃𝑌)
5 cnconst2 23198 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
62, 3, 4, 5syl3anc 1373 . 2 (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
71, 6eqeltrrid 2836 1 (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {csn 4573  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  TopOnctopon 22825   Cn ccn 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-topgen 17347  df-top 22809  df-topon 22826  df-cn 23142  df-cnp 23143
This theorem is referenced by:  cnmpt2c  23585  xkoinjcn  23602  txconn  23604  imasnopn  23605  imasncld  23606  imasncls  23607  istgp2  24006  tmdmulg  24007  tmdgsum  24010  tmdlactcn  24017  clsnsg  24025  tgpt0  24034  tlmtgp  24111  nmcn  24760  fsumcn  24788  expcn  24790  divccn  24791  expcnOLD  24792  divccnOLD  24793  cncfmptc  24832  cdivcncf  24841  iirevcn  24851  iihalf1cn  24853  iihalf1cnOLD  24854  iihalf2cn  24856  iihalf2cnOLD  24857  icchmeo  24865  icchmeoOLD  24866  evth  24885  evth2  24886  pcocn  24944  pcopt  24949  pcopt2  24950  pcoass  24951  csscld  25176  clsocv  25177  dvcnvlem  25907  plycn  26193  plycnOLD  26194  psercn2  26359  psercn2OLD  26360  resqrtcn  26686  sqrtcn  26687  atansopn  26869  efrlim  26906  efrlimOLD  26907  ipasslem7  30816  occllem  31283  rmulccn  33941  cxpcncf1  34608  txsconnlem  35284  cvxpconn  35286  cvmlift2lem2  35348  cvmlift2lem3  35349  cvmliftphtlem  35361  sinccvglem  35716  knoppcnlem10  36546  areacirclem2  37759  fprodcn  45710
  Copyright terms: Public domain W3C validator