MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptc Structured version   Visualization version   GIF version

Theorem cnmptc 22813
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptc.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptc.p (𝜑𝑃𝑌)
Assertion
Ref Expression
cnmptc (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝑌   𝑥,𝐾   𝑥,𝑃

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 5649 . 2 (𝑋 × {𝑃}) = (𝑥𝑋𝑃)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmptc.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmptc.p . . 3 (𝜑𝑃𝑌)
5 cnconst2 22434 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑌) → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
62, 3, 4, 5syl3anc 1370 . 2 (𝜑 → (𝑋 × {𝑃}) ∈ (𝐽 Cn 𝐾))
71, 6eqeltrrid 2844 1 (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-cn 22378  df-cnp 22379
This theorem is referenced by:  cnmpt2c  22821  xkoinjcn  22838  txconn  22840  imasnopn  22841  imasncld  22842  imasncls  22843  istgp2  23242  tmdmulg  23243  tmdgsum  23246  tmdlactcn  23253  clsnsg  23261  tgpt0  23270  tlmtgp  23347  nmcn  24007  fsumcn  24033  expcn  24035  divccn  24036  cncfmptc  24075  cdivcncf  24084  iirevcn  24093  iihalf1cn  24095  iihalf2cn  24097  icchmeo  24104  evth  24122  evth2  24123  pcocn  24180  pcopt  24185  pcopt2  24186  pcoass  24187  csscld  24413  clsocv  24414  dvcnvlem  25140  plycn  25422  psercn2  25582  resqrtcn  25902  sqrtcn  25903  atansopn  26082  efrlim  26119  ipasslem7  29198  occllem  29665  rmulccn  31878  cxpcncf1  32575  txsconnlem  33202  cvxpconn  33204  cvmlift2lem2  33266  cvmlift2lem3  33267  cvmliftphtlem  33279  sinccvglem  33630  knoppcnlem10  34682  areacirclem2  35866  fprodcn  43141
  Copyright terms: Public domain W3C validator