![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptc | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmptc.k | β’ (π β πΎ β (TopOnβπ)) |
cnmptc.p | β’ (π β π β π) |
Ref | Expression |
---|---|
cnmptc | β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5729 | . 2 β’ (π Γ {π}) = (π₯ β π β¦ π) | |
2 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
3 | cnmptc.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
4 | cnmptc.p | . . 3 β’ (π β π β π) | |
5 | cnconst2 23131 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π β π) β (π Γ {π}) β (π½ Cn πΎ)) | |
6 | 2, 3, 4, 5 | syl3anc 1368 | . 2 β’ (π β (π Γ {π}) β (π½ Cn πΎ)) |
7 | 1, 6 | eqeltrrid 2830 | 1 β’ (π β (π₯ β π β¦ π) β (π½ Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 {csn 4621 β¦ cmpt 5222 Γ cxp 5665 βcfv 6534 (class class class)co 7402 TopOnctopon 22756 Cn ccn 23072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-map 8819 df-topgen 17394 df-top 22740 df-topon 22757 df-cn 23075 df-cnp 23076 |
This theorem is referenced by: cnmpt2c 23518 xkoinjcn 23535 txconn 23537 imasnopn 23538 imasncld 23539 imasncls 23540 istgp2 23939 tmdmulg 23940 tmdgsum 23943 tmdlactcn 23950 clsnsg 23958 tgpt0 23967 tlmtgp 24044 nmcn 24704 fsumcn 24732 expcn 24734 divccn 24735 expcnOLD 24736 divccnOLD 24737 cncfmptc 24776 cdivcncf 24785 iirevcn 24795 iihalf1cn 24797 iihalf1cnOLD 24798 iihalf2cn 24800 iihalf2cnOLD 24801 icchmeo 24809 icchmeoOLD 24810 evth 24829 evth2 24830 pcocn 24888 pcopt 24893 pcopt2 24894 pcoass 24895 csscld 25121 clsocv 25122 dvcnvlem 25852 plycn 26139 plycnOLD 26140 psercn2 26300 psercn2OLD 26301 resqrtcn 26625 sqrtcn 26626 atansopn 26805 efrlim 26842 efrlimOLD 26843 ipasslem7 30584 occllem 31051 rmulccn 33428 cxpcncf1 34126 txsconnlem 34749 cvxpconn 34751 cvmlift2lem2 34813 cvmlift2lem3 34814 cvmliftphtlem 34826 sinccvglem 35175 knoppcnlem10 35879 areacirclem2 37081 fprodcn 44862 |
Copyright terms: Public domain | W3C validator |