Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt2nd | Structured version Visualization version GIF version |
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmpt2nd | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7825 | . . . . . 6 ⊢ 2nd :V–onto→V | |
2 | fofn 6674 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
4 | ssv 3941 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
5 | fnssres 6539 | . . . . 5 ⊢ ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
6 | 3, 4, 5 | mp2an 688 | . . . 4 ⊢ (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
7 | dffn5 6810 | . . . 4 ⊢ ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))) | |
8 | 6, 7 | mpbi 229 | . . 3 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) |
9 | fvres 6775 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) | |
10 | 9 | mpteq2ia 5173 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
11 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op2ndd 7815 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
14 | 13 | mpompt 7366 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
15 | 8, 10, 14 | 3eqtri 2770 | . 2 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
18 | tx2cn 22669 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | |
19 | 16, 17, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
20 | 15, 19 | eqeltrrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2nd c2nd 7803 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-tx 22621 |
This theorem is referenced by: cnmptcom 22737 xkofvcn 22743 cnmptk2 22745 txhmeo 22862 txswaphmeo 22864 ptunhmeo 22867 xkohmeo 22874 tgpsubcn 23149 istgp2 23150 oppgtmd 23156 prdstmdd 23183 dvrcn 23243 divcn 23937 cnrehmeo 24022 htpycom 24045 htpyco1 24047 htpycc 24049 reparphti 24066 pcohtpylem 24088 pcorevlem 24095 cxpcn 25803 vmcn 28962 dipcn 28983 mndpluscn 31778 cvxsconn 33105 cvmlift2lem6 33170 |
Copyright terms: Public domain | W3C validator |