![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2nd | Structured version Visualization version GIF version |
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmpt2nd | β’ (π β (π₯ β π, π¦ β π β¦ π¦) β ((π½ Γt πΎ) Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7992 | . . . . . 6 β’ 2nd :VβontoβV | |
2 | fofn 6804 | . . . . . 6 β’ (2nd :VβontoβV β 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 2nd Fn V |
4 | ssv 4005 | . . . . 5 β’ (π Γ π) β V | |
5 | fnssres 6670 | . . . . 5 β’ ((2nd Fn V β§ (π Γ π) β V) β (2nd βΎ (π Γ π)) Fn (π Γ π)) | |
6 | 3, 4, 5 | mp2an 690 | . . . 4 β’ (2nd βΎ (π Γ π)) Fn (π Γ π) |
7 | dffn5 6947 | . . . 4 β’ ((2nd βΎ (π Γ π)) Fn (π Γ π) β (2nd βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§))) | |
8 | 6, 7 | mpbi 229 | . . 3 β’ (2nd βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§)) |
9 | fvres 6907 | . . . 4 β’ (π§ β (π Γ π) β ((2nd βΎ (π Γ π))βπ§) = (2nd βπ§)) | |
10 | 9 | mpteq2ia 5250 | . . 3 β’ (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§)) = (π§ β (π Γ π) β¦ (2nd βπ§)) |
11 | vex 3478 | . . . . 5 β’ π₯ β V | |
12 | vex 3478 | . . . . 5 β’ π¦ β V | |
13 | 11, 12 | op2ndd 7982 | . . . 4 β’ (π§ = β¨π₯, π¦β© β (2nd βπ§) = π¦) |
14 | 13 | mpompt 7518 | . . 3 β’ (π§ β (π Γ π) β¦ (2nd βπ§)) = (π₯ β π, π¦ β π β¦ π¦) |
15 | 8, 10, 14 | 3eqtri 2764 | . 2 β’ (2nd βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π¦) |
16 | cnmpt21.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
17 | cnmpt21.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
18 | tx2cn 23105 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (2nd βΎ (π Γ π)) β ((π½ Γt πΎ) Cn πΎ)) | |
19 | 16, 17, 18 | syl2anc 584 | . 2 β’ (π β (2nd βΎ (π Γ π)) β ((π½ Γt πΎ) Cn πΎ)) |
20 | 15, 19 | eqeltrrid 2838 | 1 β’ (π β (π₯ β π, π¦ β π β¦ π¦) β ((π½ Γt πΎ) Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 β¦ cmpt 5230 Γ cxp 5673 βΎ cres 5677 Fn wfn 6535 βontoβwfo 6538 βcfv 6540 (class class class)co 7405 β cmpo 7407 2nd c2nd 7970 TopOnctopon 22403 Cn ccn 22719 Γt ctx 23055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-topgen 17385 df-top 22387 df-topon 22404 df-bases 22440 df-cn 22722 df-tx 23057 |
This theorem is referenced by: cnmptcom 23173 xkofvcn 23179 cnmptk2 23181 txhmeo 23298 txswaphmeo 23300 ptunhmeo 23303 xkohmeo 23310 tgpsubcn 23585 istgp2 23586 oppgtmd 23592 prdstmdd 23619 dvrcn 23679 divcn 24375 cnrehmeo 24460 htpycom 24483 htpyco1 24485 htpycc 24487 reparphti 24504 pcohtpylem 24526 pcorevlem 24533 cxpcn 26242 vmcn 29939 dipcn 29960 mndpluscn 32894 cvxsconn 34222 cvmlift2lem6 34287 gg-divcn 35151 gg-cnrehmeo 35159 gg-reparphti 35160 gg-cxpcn 35172 |
Copyright terms: Public domain | W3C validator |