| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2nd | Structured version Visualization version GIF version | ||
| Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| Ref | Expression |
|---|---|
| cnmpt2nd | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 8007 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6791 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | ssv 3983 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
| 5 | fnssres 6660 | . . . . 5 ⊢ ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 7 | dffn5 6936 | . . . 4 ⊢ ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) |
| 9 | fvres 6894 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) | |
| 10 | 9 | mpteq2ia 5216 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op2ndd 7997 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 14 | 13 | mpompt 7519 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 15 | 8, 10, 14 | 3eqtri 2762 | . 2 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 18 | tx2cn 23546 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | |
| 19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 20 | 15, 19 | eqeltrrid 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 Fn wfn 6525 –onto→wfo 6528 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 2nd c2nd 7985 TopOnctopon 22846 Cn ccn 23160 ×t ctx 23496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 df-topgen 17455 df-top 22830 df-topon 22847 df-bases 22882 df-cn 23163 df-tx 23498 |
| This theorem is referenced by: cnmptcom 23614 xkofvcn 23620 cnmptk2 23622 txhmeo 23739 txswaphmeo 23741 ptunhmeo 23744 xkohmeo 23751 tgpsubcn 24026 istgp2 24027 oppgtmd 24033 prdstmdd 24060 dvrcn 24120 divcnOLD 24806 divcn 24808 cnrehmeo 24900 cnrehmeoOLD 24901 htpycom 24924 htpyco1 24926 htpycc 24928 reparphti 24945 reparphtiOLD 24946 pcohtpylem 24968 pcorevlem 24975 cxpcn 26704 cxpcnOLD 26705 vmcn 30626 dipcn 30647 mndpluscn 33903 cvxsconn 35211 cvmlift2lem6 35276 |
| Copyright terms: Public domain | W3C validator |