MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2nd Structured version   Visualization version   GIF version

Theorem cnmpt2nd 23601
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
Assertion
Ref Expression
cnmpt2nd (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Distinct variable groups:   π‘₯,𝑦,πœ‘   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 8022 . . . . . 6 2nd :V–ontoβ†’V
2 fofn 6818 . . . . . 6 (2nd :V–ontoβ†’V β†’ 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 ssv 4006 . . . . 5 (𝑋 Γ— π‘Œ) βŠ† V
5 fnssres 6683 . . . . 5 ((2nd Fn V ∧ (𝑋 Γ— π‘Œ) βŠ† V) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ))
63, 4, 5mp2an 690 . . . 4 (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ)
7 dffn5 6962 . . . 4 ((2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ) ↔ (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)))
86, 7mpbi 229 . . 3 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§))
9 fvres 6921 . . . 4 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = (2nd β€˜π‘§))
109mpteq2ia 5255 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§))
11 vex 3477 . . . . 5 π‘₯ ∈ V
12 vex 3477 . . . . 5 𝑦 ∈ V
1311, 12op2ndd 8012 . . . 4 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘§) = 𝑦)
1413mpompt 7541 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
158, 10, 143eqtri 2760 . 2 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
16 cnmpt21.j . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
17 cnmpt21.k . . 3 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
18 tx2cn 23542 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
1916, 17, 18syl2anc 582 . 2 (πœ‘ β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
2015, 19eqeltrrid 2834 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3473   βŠ† wss 3949   ↦ cmpt 5235   Γ— cxp 5680   β†Ύ cres 5684   Fn wfn 6548  β€“ontoβ†’wfo 6551  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  2nd c2nd 8000  TopOnctopon 22840   Cn ccn 23156   Γ—t ctx 23492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-map 8855  df-topgen 17434  df-top 22824  df-topon 22841  df-bases 22877  df-cn 23159  df-tx 23494
This theorem is referenced by:  cnmptcom  23610  xkofvcn  23616  cnmptk2  23618  txhmeo  23735  txswaphmeo  23737  ptunhmeo  23740  xkohmeo  23747  tgpsubcn  24022  istgp2  24023  oppgtmd  24029  prdstmdd  24056  dvrcn  24116  divcnOLD  24812  divcn  24814  cnrehmeo  24906  cnrehmeoOLD  24907  htpycom  24930  htpyco1  24932  htpycc  24934  reparphti  24951  reparphtiOLD  24952  pcohtpylem  24974  pcorevlem  24981  cxpcn  26707  cxpcnOLD  26708  vmcn  30537  dipcn  30558  mndpluscn  33568  cvxsconn  34894  cvmlift2lem6  34959
  Copyright terms: Public domain W3C validator