MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2nd Structured version   Visualization version   GIF version

Theorem cnmpt2nd 23528
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
Assertion
Ref Expression
cnmpt2nd (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Distinct variable groups:   π‘₯,𝑦,πœ‘   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7995 . . . . . 6 2nd :V–ontoβ†’V
2 fofn 6801 . . . . . 6 (2nd :V–ontoβ†’V β†’ 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 ssv 4001 . . . . 5 (𝑋 Γ— π‘Œ) βŠ† V
5 fnssres 6667 . . . . 5 ((2nd Fn V ∧ (𝑋 Γ— π‘Œ) βŠ† V) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ))
63, 4, 5mp2an 689 . . . 4 (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ)
7 dffn5 6944 . . . 4 ((2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ) ↔ (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)))
86, 7mpbi 229 . . 3 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§))
9 fvres 6904 . . . 4 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = (2nd β€˜π‘§))
109mpteq2ia 5244 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§))
11 vex 3472 . . . . 5 π‘₯ ∈ V
12 vex 3472 . . . . 5 𝑦 ∈ V
1311, 12op2ndd 7985 . . . 4 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘§) = 𝑦)
1413mpompt 7518 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
158, 10, 143eqtri 2758 . 2 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
16 cnmpt21.j . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
17 cnmpt21.k . . 3 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
18 tx2cn 23469 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
1916, 17, 18syl2anc 583 . 2 (πœ‘ β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
2015, 19eqeltrrid 2832 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3468   βŠ† wss 3943   ↦ cmpt 5224   Γ— cxp 5667   β†Ύ cres 5671   Fn wfn 6532  β€“ontoβ†’wfo 6535  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  2nd c2nd 7973  TopOnctopon 22767   Cn ccn 23083   Γ—t ctx 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824  df-topgen 17398  df-top 22751  df-topon 22768  df-bases 22804  df-cn 23086  df-tx 23421
This theorem is referenced by:  cnmptcom  23537  xkofvcn  23543  cnmptk2  23545  txhmeo  23662  txswaphmeo  23664  ptunhmeo  23667  xkohmeo  23674  tgpsubcn  23949  istgp2  23950  oppgtmd  23956  prdstmdd  23983  dvrcn  24043  divcnOLD  24739  divcn  24741  cnrehmeo  24833  cnrehmeoOLD  24834  htpycom  24857  htpyco1  24859  htpycc  24861  reparphti  24878  reparphtiOLD  24879  pcohtpylem  24901  pcorevlem  24908  cxpcn  26634  cxpcnOLD  26635  vmcn  30461  dipcn  30482  mndpluscn  33436  cvxsconn  34762  cvmlift2lem6  34827
  Copyright terms: Public domain W3C validator