MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2nd Structured version   Visualization version   GIF version

Theorem cnmpt2nd 23164
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
Assertion
Ref Expression
cnmpt2nd (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Distinct variable groups:   π‘₯,𝑦,πœ‘   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7992 . . . . . 6 2nd :V–ontoβ†’V
2 fofn 6804 . . . . . 6 (2nd :V–ontoβ†’V β†’ 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 ssv 4005 . . . . 5 (𝑋 Γ— π‘Œ) βŠ† V
5 fnssres 6670 . . . . 5 ((2nd Fn V ∧ (𝑋 Γ— π‘Œ) βŠ† V) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ))
63, 4, 5mp2an 690 . . . 4 (2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ)
7 dffn5 6947 . . . 4 ((2nd β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ) ↔ (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)))
86, 7mpbi 229 . . 3 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§))
9 fvres 6907 . . . 4 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = (2nd β€˜π‘§))
109mpteq2ia 5250 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§))
11 vex 3478 . . . . 5 π‘₯ ∈ V
12 vex 3478 . . . . 5 𝑦 ∈ V
1311, 12op2ndd 7982 . . . 4 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘§) = 𝑦)
1413mpompt 7518 . . 3 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
158, 10, 143eqtri 2764 . 2 (2nd β†Ύ (𝑋 Γ— π‘Œ)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
16 cnmpt21.j . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
17 cnmpt21.k . . 3 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
18 tx2cn 23105 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
1916, 17, 18syl2anc 584 . 2 (πœ‘ β†’ (2nd β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
2015, 19eqeltrrid 2838 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3947   ↦ cmpt 5230   Γ— cxp 5673   β†Ύ cres 5677   Fn wfn 6535  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  2nd c2nd 7970  TopOnctopon 22403   Cn ccn 22719   Γ—t ctx 23055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cn 22722  df-tx 23057
This theorem is referenced by:  cnmptcom  23173  xkofvcn  23179  cnmptk2  23181  txhmeo  23298  txswaphmeo  23300  ptunhmeo  23303  xkohmeo  23310  tgpsubcn  23585  istgp2  23586  oppgtmd  23592  prdstmdd  23619  dvrcn  23679  divcn  24375  cnrehmeo  24460  htpycom  24483  htpyco1  24485  htpycc  24487  reparphti  24504  pcohtpylem  24526  pcorevlem  24533  cxpcn  26242  vmcn  29939  dipcn  29960  mndpluscn  32894  cvxsconn  34222  cvmlift2lem6  34287  gg-divcn  35151  gg-cnrehmeo  35159  gg-reparphti  35160  gg-cxpcn  35172
  Copyright terms: Public domain W3C validator