MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2nd Structured version   Visualization version   GIF version

Theorem cnmpt2nd 23605
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt2nd (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 8007 . . . . . 6 2nd :V–onto→V
2 fofn 6791 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 ssv 3983 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 6660 . . . . 5 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 692 . . . 4 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5 6936 . . . 4 ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7mpbi 230 . . 3 (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 6894 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd𝑧))
109mpteq2ia 5216 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧))
11 vex 3463 . . . . 5 𝑥 ∈ V
12 vex 3463 . . . . 5 𝑦 ∈ V
1311, 12op2ndd 7997 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1413mpompt 7519 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) = (𝑥𝑋, 𝑦𝑌𝑦)
158, 10, 143eqtri 2762 . 2 (2nd ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑦)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx2cn 23546 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
1916, 17, 18syl2anc 584 . 2 (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
2015, 19eqeltrrid 2839 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cmpt 5201   × cxp 5652  cres 5656   Fn wfn 6525  ontowfo 6528  cfv 6530  (class class class)co 7403  cmpo 7405  2nd c2nd 7985  TopOnctopon 22846   Cn ccn 23160   ×t ctx 23496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fo 6536  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882  df-cn 23163  df-tx 23498
This theorem is referenced by:  cnmptcom  23614  xkofvcn  23620  cnmptk2  23622  txhmeo  23739  txswaphmeo  23741  ptunhmeo  23744  xkohmeo  23751  tgpsubcn  24026  istgp2  24027  oppgtmd  24033  prdstmdd  24060  dvrcn  24120  divcnOLD  24806  divcn  24808  cnrehmeo  24900  cnrehmeoOLD  24901  htpycom  24924  htpyco1  24926  htpycc  24928  reparphti  24945  reparphtiOLD  24946  pcohtpylem  24968  pcorevlem  24975  cxpcn  26704  cxpcnOLD  26705  vmcn  30626  dipcn  30647  mndpluscn  33903  cvxsconn  35211  cvmlift2lem6  35276
  Copyright terms: Public domain W3C validator