| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2nd | Structured version Visualization version GIF version | ||
| Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| Ref | Expression |
|---|---|
| cnmpt2nd | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 7942 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6737 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | ssv 3959 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
| 5 | fnssres 6604 | . . . . 5 ⊢ ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 7 | dffn5 6880 | . . . 4 ⊢ ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) |
| 9 | fvres 6841 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) | |
| 10 | 9 | mpteq2ia 5186 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op2ndd 7932 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 14 | 13 | mpompt 7460 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 15 | 8, 10, 14 | 3eqtri 2758 | . 2 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 18 | tx2cn 23523 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | |
| 19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 20 | 15, 19 | eqeltrrid 2836 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ↦ cmpt 5172 × cxp 5614 ↾ cres 5618 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 2nd c2nd 7920 TopOnctopon 22823 Cn ccn 23137 ×t ctx 23473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17344 df-top 22807 df-topon 22824 df-bases 22859 df-cn 23140 df-tx 23475 |
| This theorem is referenced by: cnmptcom 23591 xkofvcn 23597 cnmptk2 23599 txhmeo 23716 txswaphmeo 23718 ptunhmeo 23721 xkohmeo 23728 tgpsubcn 24003 istgp2 24004 oppgtmd 24010 prdstmdd 24037 dvrcn 24097 divcnOLD 24782 divcn 24784 cnrehmeo 24876 cnrehmeoOLD 24877 htpycom 24900 htpyco1 24902 htpycc 24904 reparphti 24921 reparphtiOLD 24922 pcohtpylem 24944 pcorevlem 24951 cxpcn 26679 cxpcnOLD 26680 vmcn 30674 dipcn 30695 mndpluscn 33934 cvxsconn 35275 cvmlift2lem6 35340 |
| Copyright terms: Public domain | W3C validator |