![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipcn | Structured version Visualization version GIF version |
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipcn.p | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
dipcn.c | ⊢ 𝐶 = (IndMet‘𝑈) |
dipcn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
dipcn.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dipcn | ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2734 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2734 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2734 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | dipcn.p | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dipfval 30730 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
7 | dipcn.c | . . . . 5 ⊢ 𝐶 = (IndMet‘𝑈) | |
8 | 1, 7 | imsxmet 30720 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) |
9 | dipcn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
10 | 9 | mopntopon 24464 | . . . 4 ⊢ (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
12 | dipcn.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
13 | fzfid 14010 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1...4) ∈ Fin) | |
14 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
15 | 12 | cnfldtopon 24818 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ)) |
17 | ax-icn 11211 | . . . . . . 7 ⊢ i ∈ ℂ | |
18 | elfznn 13589 | . . . . . . . . 9 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
19 | 18 | adantl 481 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ) |
20 | 19 | nnnn0d 12584 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0) |
21 | expcl 14116 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
22 | 17, 20, 21 | sylancr 587 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
23 | 14, 14, 16, 22 | cnmpt2c 23693 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 14, 14 | cnmpt1st 23691 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
25 | 14, 14 | cnmpt2nd 23692 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
26 | 7, 9, 3, 12 | smcn 30726 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
27 | 26 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
28 | 14, 14, 23, 25, 27 | cnmpt22f 23698 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
29 | 7, 9, 2 | vacn 30722 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
30 | 29 | adantr 480 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
31 | 14, 14, 24, 28, 30 | cnmpt22f 23698 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
32 | 4, 7, 9, 12 | nmcnc 30724 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
33 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
34 | 14, 14, 31, 33 | cnmpt21f 23695 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
35 | 12 | sqcn 24913 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)) |
37 | oveq1 7437 | . . . . . 6 ⊢ (𝑧 = ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) → (𝑧↑2) = (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) | |
38 | 14, 14, 34, 16, 36, 37 | cnmpt21 23694 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
39 | 12 | mulcn 24902 | . . . . . 6 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
40 | 39 | a1i 11 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
41 | 14, 14, 23, 38, 40 | cnmpt22f 23698 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
42 | 12, 11, 13, 11, 41 | fsum2cn 24908 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
43 | 15 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ)) |
44 | 4cn 12348 | . . . . 5 ⊢ 4 ∈ ℂ | |
45 | 4ne0 12371 | . . . . 5 ⊢ 4 ≠ 0 | |
46 | 12 | divccn 24910 | . . . . 5 ⊢ ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
47 | 44, 45, 46 | mp2an 692 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾) |
48 | 47 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
49 | oveq1 7437 | . . 3 ⊢ (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
50 | 11, 11, 42, 43, 48, 49 | cnmpt21 23694 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
51 | 6, 50 | eqeltrd 2838 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ℂcc 11150 0cc0 11152 1c1 11153 ici 11154 · cmul 11157 / cdiv 11917 ℕcn 12263 2c2 12318 4c4 12320 ℕ0cn0 12523 ...cfz 13543 ↑cexp 14098 Σcsu 15718 TopOpenctopn 17467 ∞Metcxmet 21366 MetOpencmopn 21371 ℂfldccnfld 21381 TopOnctopon 22931 Cn ccn 23247 ×t ctx 23583 NrmCVeccnv 30612 +𝑣 cpv 30613 BaseSetcba 30614 ·𝑠OLD cns 30615 normCVcnmcv 30618 IndMetcims 30619 ·𝑖OLDcdip 30728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cn 23250 df-cnp 23251 df-tx 23585 df-hmeo 23778 df-xms 24345 df-ms 24346 df-tms 24347 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-dip 30729 |
This theorem is referenced by: ipasslem7 30864 occllem 31331 |
Copyright terms: Public domain | W3C validator |