![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipcn | Structured version Visualization version GIF version |
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipcn.p | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
dipcn.c | ⊢ 𝐶 = (IndMet‘𝑈) |
dipcn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
dipcn.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dipcn | ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2778 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2778 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2778 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | dipcn.p | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dipfval 28256 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
7 | dipcn.c | . . . . 5 ⊢ 𝐶 = (IndMet‘𝑈) | |
8 | 1, 7 | imsxmet 28246 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) |
9 | dipcn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
10 | 9 | mopntopon 22752 | . . . 4 ⊢ (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
12 | dipcn.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
13 | fzfid 13156 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1...4) ∈ Fin) | |
14 | 11 | adantr 473 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
15 | 12 | cnfldtopon 23094 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ)) |
17 | ax-icn 10394 | . . . . . . 7 ⊢ i ∈ ℂ | |
18 | elfznn 12752 | . . . . . . . . 9 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
19 | 18 | adantl 474 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ) |
20 | 19 | nnnn0d 11767 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0) |
21 | expcl 13262 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
22 | 17, 20, 21 | sylancr 578 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
23 | 14, 14, 16, 22 | cnmpt2c 21982 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 14, 14 | cnmpt1st 21980 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
25 | 14, 14 | cnmpt2nd 21981 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
26 | 7, 9, 3, 12 | smcn 28252 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
27 | 26 | adantr 473 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
28 | 14, 14, 23, 25, 27 | cnmpt22f 21987 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
29 | 7, 9, 2 | vacn 28248 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
30 | 29 | adantr 473 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
31 | 14, 14, 24, 28, 30 | cnmpt22f 21987 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
32 | 4, 7, 9, 12 | nmcnc 28250 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
33 | 32 | adantr 473 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
34 | 14, 14, 31, 33 | cnmpt21f 21984 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
35 | 12 | sqcn 23185 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)) |
37 | oveq1 6983 | . . . . . 6 ⊢ (𝑧 = ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) → (𝑧↑2) = (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) | |
38 | 14, 14, 34, 16, 36, 37 | cnmpt21 21983 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
39 | 12 | mulcn 23178 | . . . . . 6 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
40 | 39 | a1i 11 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
41 | 14, 14, 23, 38, 40 | cnmpt22f 21987 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
42 | 12, 11, 13, 11, 41 | fsum2cn 23182 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
43 | 15 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ)) |
44 | 4cn 11526 | . . . . 5 ⊢ 4 ∈ ℂ | |
45 | 4ne0 11555 | . . . . 5 ⊢ 4 ≠ 0 | |
46 | 12 | divccn 23184 | . . . . 5 ⊢ ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
47 | 44, 45, 46 | mp2an 679 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾) |
48 | 47 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
49 | oveq1 6983 | . . 3 ⊢ (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
50 | 11, 11, 42, 43, 48, 49 | cnmpt21 21983 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
51 | 6, 50 | eqeltrd 2866 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ↦ cmpt 5008 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 ℂcc 10333 0cc0 10335 1c1 10336 ici 10337 · cmul 10340 / cdiv 11098 ℕcn 11439 2c2 11495 4c4 11497 ℕ0cn0 11707 ...cfz 12708 ↑cexp 13244 Σcsu 14903 TopOpenctopn 16551 ∞Metcxmet 20232 MetOpencmopn 20237 ℂfldccnfld 20247 TopOnctopon 21222 Cn ccn 21536 ×t ctx 21872 NrmCVeccnv 28138 +𝑣 cpv 28139 BaseSetcba 28140 ·𝑠OLD cns 28141 normCVcnmcv 28144 IndMetcims 28145 ·𝑖OLDcdip 28254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-icc 12561 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-sum 14904 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cn 21539 df-cnp 21540 df-tx 21874 df-hmeo 22067 df-xms 22633 df-ms 22634 df-tms 22635 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-vs 28153 df-nmcv 28154 df-ims 28155 df-dip 28255 |
This theorem is referenced by: ipasslem7 28390 occllem 28861 |
Copyright terms: Public domain | W3C validator |