Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipcn | Structured version Visualization version GIF version |
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipcn.p | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
dipcn.c | ⊢ 𝐶 = (IndMet‘𝑈) |
dipcn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
dipcn.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dipcn | ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2739 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2739 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2739 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | dipcn.p | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dipfval 29073 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
7 | dipcn.c | . . . . 5 ⊢ 𝐶 = (IndMet‘𝑈) | |
8 | 1, 7 | imsxmet 29063 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) |
9 | dipcn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
10 | 9 | mopntopon 23601 | . . . 4 ⊢ (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
12 | dipcn.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
13 | fzfid 13702 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1...4) ∈ Fin) | |
14 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
15 | 12 | cnfldtopon 23955 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ)) |
17 | ax-icn 10939 | . . . . . . 7 ⊢ i ∈ ℂ | |
18 | elfznn 13294 | . . . . . . . . 9 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
19 | 18 | adantl 482 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ) |
20 | 19 | nnnn0d 12302 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0) |
21 | expcl 13809 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
22 | 17, 20, 21 | sylancr 587 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
23 | 14, 14, 16, 22 | cnmpt2c 22830 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 14, 14 | cnmpt1st 22828 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
25 | 14, 14 | cnmpt2nd 22829 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
26 | 7, 9, 3, 12 | smcn 29069 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
27 | 26 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
28 | 14, 14, 23, 25, 27 | cnmpt22f 22835 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
29 | 7, 9, 2 | vacn 29065 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
30 | 29 | adantr 481 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
31 | 14, 14, 24, 28, 30 | cnmpt22f 22835 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
32 | 4, 7, 9, 12 | nmcnc 29067 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
33 | 32 | adantr 481 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
34 | 14, 14, 31, 33 | cnmpt21f 22832 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
35 | 12 | sqcn 24046 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)) |
37 | oveq1 7291 | . . . . . 6 ⊢ (𝑧 = ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) → (𝑧↑2) = (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) | |
38 | 14, 14, 34, 16, 36, 37 | cnmpt21 22831 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
39 | 12 | mulcn 24039 | . . . . . 6 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
40 | 39 | a1i 11 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
41 | 14, 14, 23, 38, 40 | cnmpt22f 22835 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
42 | 12, 11, 13, 11, 41 | fsum2cn 24043 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
43 | 15 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ)) |
44 | 4cn 12067 | . . . . 5 ⊢ 4 ∈ ℂ | |
45 | 4ne0 12090 | . . . . 5 ⊢ 4 ≠ 0 | |
46 | 12 | divccn 24045 | . . . . 5 ⊢ ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
47 | 44, 45, 46 | mp2an 689 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾) |
48 | 47 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
49 | oveq1 7291 | . . 3 ⊢ (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
50 | 11, 11, 42, 43, 48, 49 | cnmpt21 22831 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
51 | 6, 50 | eqeltrd 2840 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ↦ cmpt 5158 ‘cfv 6437 (class class class)co 7284 ∈ cmpo 7286 ℂcc 10878 0cc0 10880 1c1 10881 ici 10882 · cmul 10885 / cdiv 11641 ℕcn 11982 2c2 12037 4c4 12039 ℕ0cn0 12242 ...cfz 13248 ↑cexp 13791 Σcsu 15406 TopOpenctopn 17141 ∞Metcxmet 20591 MetOpencmopn 20596 ℂfldccnfld 20606 TopOnctopon 22068 Cn ccn 22384 ×t ctx 22720 NrmCVeccnv 28955 +𝑣 cpv 28956 BaseSetcba 28957 ·𝑠OLD cns 28958 normCVcnmcv 28961 IndMetcims 28962 ·𝑖OLDcdip 29071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-map 8626 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-icc 13095 df-fz 13249 df-fzo 13392 df-seq 13731 df-exp 13792 df-hash 14054 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-clim 15206 df-sum 15407 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-mulg 18710 df-cntz 18932 df-cmn 19397 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cn 22387 df-cnp 22388 df-tx 22722 df-hmeo 22915 df-xms 23482 df-ms 23483 df-tms 23484 df-grpo 28864 df-gid 28865 df-ginv 28866 df-gdiv 28867 df-ablo 28916 df-vc 28930 df-nv 28963 df-va 28966 df-ba 28967 df-sm 28968 df-0v 28969 df-vs 28970 df-nmcv 28971 df-ims 28972 df-dip 29072 |
This theorem is referenced by: ipasslem7 29207 occllem 29674 |
Copyright terms: Public domain | W3C validator |