MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcn Structured version   Visualization version   GIF version

Theorem dipcn 30700
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipcn.p 𝑃 = (·𝑖OLD𝑈)
dipcn.c 𝐶 = (IndMet‘𝑈)
dipcn.j 𝐽 = (MetOpen‘𝐶)
dipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dipcn (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem dipcn
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2731 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2731 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2731 . . 3 (normCV𝑈) = (normCV𝑈)
5 dipcn.p . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 30682 . 2 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
7 dipcn.c . . . . 5 𝐶 = (IndMet‘𝑈)
81, 7imsxmet 30672 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
9 dipcn.j . . . . 5 𝐽 = (MetOpen‘𝐶)
109mopntopon 24354 . . . 4 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
118, 10syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
12 dipcn.k . . . 4 𝐾 = (TopOpen‘ℂfld)
13 fzfid 13880 . . . 4 (𝑈 ∈ NrmCVec → (1...4) ∈ Fin)
1411adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1512cnfldtopon 24697 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
1615a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ))
17 ax-icn 11065 . . . . . . 7 i ∈ ℂ
18 elfznn 13453 . . . . . . . . 9 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
1918adantl 481 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ)
2019nnnn0d 12442 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0)
21 expcl 13986 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
2217, 20, 21sylancr 587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
2314, 14, 16, 22cnmpt2c 23585 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
2414, 14cnmpt1st 23583 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2514, 14cnmpt2nd 23584 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
267, 9, 3, 12smcn 30678 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2726adantr 480 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2814, 14, 23, 25, 27cnmpt22f 23590 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
297, 9, 2vacn 30674 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3029adantr 480 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3114, 14, 24, 28, 30cnmpt22f 23590 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
324, 7, 9, 12nmcnc 30676 . . . . . . . 8 (𝑈 ∈ NrmCVec → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3332adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3414, 14, 31, 33cnmpt21f 23587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3512sqcn 24794 . . . . . . 7 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)
3635a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾))
37 oveq1 7353 . . . . . 6 (𝑧 = ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) → (𝑧↑2) = (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))
3814, 14, 34, 16, 36, 37cnmpt21 23586 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3912mulcn 24783 . . . . . 6 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4039a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4114, 14, 23, 38, 40cnmpt22f 23590 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4212, 11, 13, 11, 41fsum2cn 24789 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4315a1i 11 . . 3 (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ))
44 4cn 12210 . . . . 5 4 ∈ ℂ
45 4ne0 12233 . . . . 5 4 ≠ 0
4612divccn 24791 . . . . 5 ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
4744, 45, 46mp2an 692 . . . 4 (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)
4847a1i 11 . . 3 (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
49 oveq1 7353 . . 3 (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
5011, 11, 42, 43, 48, 49cnmpt21 23586 . 2 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
516, 50eqeltrd 2831 1 (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11004  0cc0 11006  1c1 11007  ici 11008   · cmul 11011   / cdiv 11774  cn 12125  2c2 12180  4c4 12182  0cn0 12381  ...cfz 13407  cexp 13968  Σcsu 15593  TopOpenctopn 17325  ∞Metcxmet 21276  MetOpencmopn 21281  fldccnfld 21291  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  normCVcnmcv 30570  IndMetcims 30571  ·𝑖OLDcdip 30680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-dip 30681
This theorem is referenced by:  ipasslem7  30816  occllem  31283
  Copyright terms: Public domain W3C validator