![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipcn | Structured version Visualization version GIF version |
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipcn.p | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
dipcn.c | ⊢ 𝐶 = (IndMet‘𝑈) |
dipcn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
dipcn.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dipcn | ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2736 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2736 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2736 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | dipcn.p | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dipfval 29644 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
7 | dipcn.c | . . . . 5 ⊢ 𝐶 = (IndMet‘𝑈) | |
8 | 1, 7 | imsxmet 29634 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) |
9 | dipcn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
10 | 9 | mopntopon 23792 | . . . 4 ⊢ (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
12 | dipcn.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
13 | fzfid 13878 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1...4) ∈ Fin) | |
14 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
15 | 12 | cnfldtopon 24146 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ)) |
17 | ax-icn 11110 | . . . . . . 7 ⊢ i ∈ ℂ | |
18 | elfznn 13470 | . . . . . . . . 9 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
19 | 18 | adantl 482 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ) |
20 | 19 | nnnn0d 12473 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0) |
21 | expcl 13985 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
22 | 17, 20, 21 | sylancr 587 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
23 | 14, 14, 16, 22 | cnmpt2c 23021 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 14, 14 | cnmpt1st 23019 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
25 | 14, 14 | cnmpt2nd 23020 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
26 | 7, 9, 3, 12 | smcn 29640 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
27 | 26 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD ‘𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
28 | 14, 14, 23, 25, 27 | cnmpt22f 23026 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
29 | 7, 9, 2 | vacn 29636 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
30 | 29 | adantr 481 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣 ‘𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
31 | 14, 14, 24, 28, 30 | cnmpt22f 23026 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
32 | 4, 7, 9, 12 | nmcnc 29638 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
33 | 32 | adantr 481 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV‘𝑈) ∈ (𝐽 Cn 𝐾)) |
34 | 14, 14, 31, 33 | cnmpt21f 23023 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
35 | 12 | sqcn 24237 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)) |
37 | oveq1 7364 | . . . . . 6 ⊢ (𝑧 = ((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦))) → (𝑧↑2) = (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) | |
38 | 14, 14, 34, 16, 36, 37 | cnmpt21 23022 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
39 | 12 | mulcn 24230 | . . . . . 6 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
40 | 39 | a1i 11 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
41 | 14, 14, 23, 38, 40 | cnmpt22f 23026 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
42 | 12, 11, 13, 11, 41 | fsum2cn 24234 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
43 | 15 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ)) |
44 | 4cn 12238 | . . . . 5 ⊢ 4 ∈ ℂ | |
45 | 4ne0 12261 | . . . . 5 ⊢ 4 ≠ 0 | |
46 | 12 | divccn 24236 | . . . . 5 ⊢ ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
47 | 44, 45, 46 | mp2an 690 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾) |
48 | 47 | a1i 11 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)) |
49 | oveq1 7364 | . . 3 ⊢ (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
50 | 11, 11, 42, 43, 48, 49 | cnmpt21 23022 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
51 | 6, 50 | eqeltrd 2838 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ℂcc 11049 0cc0 11051 1c1 11052 ici 11053 · cmul 11056 / cdiv 11812 ℕcn 12153 2c2 12208 4c4 12210 ℕ0cn0 12413 ...cfz 13424 ↑cexp 13967 Σcsu 15570 TopOpenctopn 17303 ∞Metcxmet 20781 MetOpencmopn 20786 ℂfldccnfld 20796 TopOnctopon 22259 Cn ccn 22575 ×t ctx 22911 NrmCVeccnv 29526 +𝑣 cpv 29527 BaseSetcba 29528 ·𝑠OLD cns 29529 normCVcnmcv 29532 IndMetcims 29533 ·𝑖OLDcdip 29642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cn 22578 df-cnp 22579 df-tx 22913 df-hmeo 23106 df-xms 23673 df-ms 23674 df-tms 23675 df-grpo 29435 df-gid 29436 df-ginv 29437 df-gdiv 29438 df-ablo 29487 df-vc 29501 df-nv 29534 df-va 29537 df-ba 29538 df-sm 29539 df-0v 29540 df-vs 29541 df-nmcv 29542 df-ims 29543 df-dip 29643 |
This theorem is referenced by: ipasslem7 29778 occllem 30245 |
Copyright terms: Public domain | W3C validator |