Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(BaseSetβπ) =
(BaseSetβπ) |
2 | | eqid 2732 |
. . 3
β’ (
+π£ βπ) = ( +π£ βπ) |
3 | | eqid 2732 |
. . 3
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
4 | | eqid 2732 |
. . 3
β’
(normCVβπ) = (normCVβπ) |
5 | | dipcn.p |
. . 3
β’ π =
(Β·πOLDβπ) |
6 | 1, 2, 3, 4, 5 | dipfval 29942 |
. 2
β’ (π β NrmCVec β π = (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) / 4))) |
7 | | dipcn.c |
. . . . 5
β’ πΆ = (IndMetβπ) |
8 | 1, 7 | imsxmet 29932 |
. . . 4
β’ (π β NrmCVec β πΆ β
(βMetβ(BaseSetβπ))) |
9 | | dipcn.j |
. . . . 5
β’ π½ = (MetOpenβπΆ) |
10 | 9 | mopntopon 23936 |
. . . 4
β’ (πΆ β
(βMetβ(BaseSetβπ)) β π½ β (TopOnβ(BaseSetβπ))) |
11 | 8, 10 | syl 17 |
. . 3
β’ (π β NrmCVec β π½ β
(TopOnβ(BaseSetβπ))) |
12 | | dipcn.k |
. . . 4
β’ πΎ =
(TopOpenββfld) |
13 | | fzfid 13934 |
. . . 4
β’ (π β NrmCVec β (1...4)
β Fin) |
14 | 11 | adantr 481 |
. . . . 5
β’ ((π β NrmCVec β§ π β (1...4)) β π½ β
(TopOnβ(BaseSetβπ))) |
15 | 12 | cnfldtopon 24290 |
. . . . . . 7
β’ πΎ β
(TopOnββ) |
16 | 15 | a1i 11 |
. . . . . 6
β’ ((π β NrmCVec β§ π β (1...4)) β πΎ β
(TopOnββ)) |
17 | | ax-icn 11165 |
. . . . . . 7
β’ i β
β |
18 | | elfznn 13526 |
. . . . . . . . 9
β’ (π β (1...4) β π β
β) |
19 | 18 | adantl 482 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β (1...4)) β π β
β) |
20 | 19 | nnnn0d 12528 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β (1...4)) β π β
β0) |
21 | | expcl 14041 |
. . . . . . 7
β’ ((i
β β β§ π
β β0) β (iβπ) β β) |
22 | 17, 20, 21 | sylancr 587 |
. . . . . 6
β’ ((π β NrmCVec β§ π β (1...4)) β
(iβπ) β
β) |
23 | 14, 14, 16, 22 | cnmpt2c 23165 |
. . . . 5
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ (iβπ)) β ((π½ Γt π½) Cn πΎ)) |
24 | 14, 14 | cnmpt1st 23163 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ π₯) β ((π½ Γt π½) Cn π½)) |
25 | 14, 14 | cnmpt2nd 23164 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ π¦) β ((π½ Γt π½) Cn π½)) |
26 | 7, 9, 3, 12 | smcn 29938 |
. . . . . . . . . 10
β’ (π β NrmCVec β (
Β·π OLD βπ) β ((πΎ Γt π½) Cn π½)) |
27 | 26 | adantr 481 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ π β (1...4)) β (
Β·π OLD βπ) β ((πΎ Γt π½) Cn π½)) |
28 | 14, 14, 23, 25, 27 | cnmpt22f 23170 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ ((iβπ)( Β·π OLD
βπ)π¦)) β ((π½ Γt π½) Cn π½)) |
29 | 7, 9, 2 | vacn 29934 |
. . . . . . . . 9
β’ (π β NrmCVec β (
+π£ βπ) β ((π½ Γt π½) Cn π½)) |
30 | 29 | adantr 481 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β (1...4)) β (
+π£ βπ) β ((π½ Γt π½) Cn π½)) |
31 | 14, 14, 24, 28, 30 | cnmpt22f 23170 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ (π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦))) β ((π½ Γt π½) Cn π½)) |
32 | 4, 7, 9, 12 | nmcnc 29936 |
. . . . . . . 8
β’ (π β NrmCVec β
(normCVβπ)
β (π½ Cn πΎ)) |
33 | 32 | adantr 481 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β (1...4)) β
(normCVβπ)
β (π½ Cn πΎ)) |
34 | 14, 14, 31, 33 | cnmpt21f 23167 |
. . . . . 6
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ ((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))) β ((π½ Γt π½) Cn πΎ)) |
35 | 12 | sqcn 24381 |
. . . . . . 7
β’ (π§ β β β¦ (π§β2)) β (πΎ Cn πΎ) |
36 | 35 | a1i 11 |
. . . . . 6
β’ ((π β NrmCVec β§ π β (1...4)) β (π§ β β β¦ (π§β2)) β (πΎ Cn πΎ)) |
37 | | oveq1 7412 |
. . . . . 6
β’ (π§ =
((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦))) β (π§β2) = (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) |
38 | 14, 14, 34, 16, 36, 37 | cnmpt21 23166 |
. . . . 5
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) β ((π½ Γt π½) Cn πΎ)) |
39 | 12 | mulcn 24374 |
. . . . . 6
β’ Β·
β ((πΎ
Γt πΎ) Cn
πΎ) |
40 | 39 | a1i 11 |
. . . . 5
β’ ((π β NrmCVec β§ π β (1...4)) β Β·
β ((πΎ
Γt πΎ) Cn
πΎ)) |
41 | 14, 14, 23, 38, 40 | cnmpt22f 23170 |
. . . 4
β’ ((π β NrmCVec β§ π β (1...4)) β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ ((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2))) β ((π½ Γt π½) Cn πΎ)) |
42 | 12, 11, 13, 11, 41 | fsum2cn 24378 |
. . 3
β’ (π β NrmCVec β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2))) β ((π½ Γt π½) Cn πΎ)) |
43 | 15 | a1i 11 |
. . 3
β’ (π β NrmCVec β πΎ β
(TopOnββ)) |
44 | | 4cn 12293 |
. . . . 5
β’ 4 β
β |
45 | | 4ne0 12316 |
. . . . 5
β’ 4 β
0 |
46 | 12 | divccn 24380 |
. . . . 5
β’ ((4
β β β§ 4 β 0) β (π§ β β β¦ (π§ / 4)) β (πΎ Cn πΎ)) |
47 | 44, 45, 46 | mp2an 690 |
. . . 4
β’ (π§ β β β¦ (π§ / 4)) β (πΎ Cn πΎ) |
48 | 47 | a1i 11 |
. . 3
β’ (π β NrmCVec β (π§ β β β¦ (π§ / 4)) β (πΎ Cn πΎ)) |
49 | | oveq1 7412 |
. . 3
β’ (π§ = Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) β (π§ / 4) = (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) / 4)) |
50 | 11, 11, 42, 43, 48, 49 | cnmpt21 23166 |
. 2
β’ (π β NrmCVec β (π₯ β (BaseSetβπ), π¦ β (BaseSetβπ) β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD
βπ)π¦)))β2)) / 4)) β ((π½ Γt π½) Cn πΎ)) |
51 | 6, 50 | eqeltrd 2833 |
1
β’ (π β NrmCVec β π β ((π½ Γt π½) Cn πΎ)) |