![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrehmeo | Structured version Visualization version GIF version |
Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 12919 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
cnrehmeo.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnrehmeo | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retopon 24164 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
4 | 2, 3 | eqeltri 2828 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
6 | cnrehmeo.3 | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24184 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
8 | cnrest2r 22675 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
9 | 7, 8 | mp1i 13 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
10 | 5, 5 | cnmpt1st 23056 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6 | tgioo2 24203 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
12 | 2, 11 | eqtri 2759 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
13 | 12 | oveq2i 7373 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
14 | 10, 13 | eleqtrdi 2842 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
15 | 9, 14 | sseldd 3948 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
16 | 6 | cnfldtopon 24183 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
18 | ax-icn 11119 | . . . . . . . 8 ⊢ i ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
20 | 5, 5, 17, 19 | cnmpt2c 23058 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
21 | 5, 5 | cnmpt2nd 23057 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 21, 13 | eleqtrdi 2842 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
23 | 9, 22 | sseldd 3948 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 6 | mulcn 24267 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 23063 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
27 | 6 | addcn 24265 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 23063 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
30 | 1, 29 | eqeltrid 2836 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
31 | 1 | cnrecnv 15062 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | ref 15009 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
34 | 33 | feqmptd 6915 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
35 | recncf 24302 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
36 | ssid 3969 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
37 | ax-resscn 11117 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
38 | 16 | toponrestid 22307 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
39 | 6, 38, 12 | cncfcn 24310 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
40 | 36, 37, 39 | mp2an 690 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
41 | 35, 40 | eleqtri 2830 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
42 | 34, 41 | eqeltrrdi 2841 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
43 | imf 15010 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
44 | 43 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
45 | 44 | feqmptd 6915 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
46 | imcncf 24303 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
47 | 46, 40 | eleqtri 2830 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
48 | 45, 47 | eqeltrrdi 2841 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
49 | 17, 42, 48 | cnmpt1t 23053 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
50 | 31, 49 | eqeltrid 2836 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
51 | ishmeo 23147 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
52 | 30, 50, 51 | sylanbrc 583 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
53 | 52 | mptru 1548 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ⊆ wss 3913 〈cop 4597 ↦ cmpt 5193 ◡ccnv 5637 ran crn 5639 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 ∈ cmpo 7364 ℂcc 11058 ℝcr 11059 ici 11062 + caddc 11063 · cmul 11065 (,)cioo 13274 ℜcre 14994 ℑcim 14995 ↾t crest 17316 TopOpenctopn 17317 topGenctg 17333 ℂfldccnfld 20833 Topctop 22279 TopOnctopon 22296 Cn ccn 22612 ×t ctx 22948 Homeochmeo 23141 –cn→ccncf 24276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11116 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 ax-pre-mulgt0 11137 ax-pre-sup 11138 ax-addf 11139 ax-mulf 11140 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-map 8774 df-ixp 8843 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-fi 9356 df-sup 9387 df-inf 9388 df-oi 9455 df-card 9884 df-pnf 11200 df-mnf 11201 df-xr 11202 df-ltxr 11203 df-le 11204 df-sub 11396 df-neg 11397 df-div 11822 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12423 df-z 12509 df-dec 12628 df-uz 12773 df-q 12883 df-rp 12925 df-xneg 13042 df-xadd 13043 df-xmul 13044 df-ioo 13278 df-icc 13281 df-fz 13435 df-fzo 13578 df-seq 13917 df-exp 13978 df-hash 14241 df-cj 14996 df-re 14997 df-im 14998 df-sqrt 15132 df-abs 15133 df-struct 17030 df-sets 17047 df-slot 17065 df-ndx 17077 df-base 17095 df-ress 17124 df-plusg 17160 df-mulr 17161 df-starv 17162 df-sca 17163 df-vsca 17164 df-ip 17165 df-tset 17166 df-ple 17167 df-ds 17169 df-unif 17170 df-hom 17171 df-cco 17172 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18511 df-sgrp 18560 df-mnd 18571 df-submnd 18616 df-mulg 18887 df-cntz 19111 df-cmn 19578 df-psmet 20825 df-xmet 20826 df-met 20827 df-bl 20828 df-mopn 20829 df-cnfld 20834 df-top 22280 df-topon 22297 df-topsp 22319 df-bases 22333 df-cn 22615 df-cnp 22616 df-tx 22950 df-hmeo 23143 df-xms 23710 df-ms 23711 df-tms 23712 df-cncf 24278 |
This theorem is referenced by: cnheiborlem 24354 mbfimaopnlem 25056 tpr2rico 32582 |
Copyright terms: Public domain | W3C validator |