![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrehmeo | Structured version Visualization version GIF version |
Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 12902 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
cnrehmeo.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnrehmeo | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retopon 24111 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
4 | 2, 3 | eqeltri 2834 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
6 | cnrehmeo.3 | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24131 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
8 | cnrest2r 22622 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
9 | 7, 8 | mp1i 13 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
10 | 5, 5 | cnmpt1st 23003 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6 | tgioo2 24150 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
12 | 2, 11 | eqtri 2764 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
13 | 12 | oveq2i 7364 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
14 | 10, 13 | eleqtrdi 2848 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
15 | 9, 14 | sseldd 3943 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
16 | 6 | cnfldtopon 24130 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
18 | ax-icn 11106 | . . . . . . . 8 ⊢ i ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
20 | 5, 5, 17, 19 | cnmpt2c 23005 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
21 | 5, 5 | cnmpt2nd 23004 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 21, 13 | eleqtrdi 2848 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
23 | 9, 22 | sseldd 3943 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 6 | mulcn 24214 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 23010 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
27 | 6 | addcn 24212 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 23010 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
30 | 1, 29 | eqeltrid 2842 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
31 | 1 | cnrecnv 15042 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | ref 14989 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
34 | 33 | feqmptd 6907 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
35 | recncf 24249 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
36 | ssid 3964 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
37 | ax-resscn 11104 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
38 | 16 | toponrestid 22254 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
39 | 6, 38, 12 | cncfcn 24257 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
40 | 36, 37, 39 | mp2an 690 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
41 | 35, 40 | eleqtri 2836 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
42 | 34, 41 | eqeltrrdi 2847 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
43 | imf 14990 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
44 | 43 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
45 | 44 | feqmptd 6907 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
46 | imcncf 24250 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
47 | 46, 40 | eleqtri 2836 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
48 | 45, 47 | eqeltrrdi 2847 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
49 | 17, 42, 48 | cnmpt1t 23000 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
50 | 31, 49 | eqeltrid 2842 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
51 | ishmeo 23094 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
52 | 30, 50, 51 | sylanbrc 583 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
53 | 52 | mptru 1548 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ⊆ wss 3908 〈cop 4590 ↦ cmpt 5186 ◡ccnv 5630 ran crn 5632 ⟶wf 6489 ‘cfv 6493 (class class class)co 7353 ∈ cmpo 7355 ℂcc 11045 ℝcr 11046 ici 11049 + caddc 11050 · cmul 11052 (,)cioo 13256 ℜcre 14974 ℑcim 14975 ↾t crest 17294 TopOpenctopn 17295 topGenctg 17311 ℂfldccnfld 20781 Topctop 22226 TopOnctopon 22243 Cn ccn 22559 ×t ctx 22895 Homeochmeo 23088 –cn→ccncf 24223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 ax-addf 11126 ax-mulf 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7613 df-om 7799 df-1st 7917 df-2nd 7918 df-supp 8089 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-2o 8409 df-er 8644 df-map 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9302 df-fi 9343 df-sup 9374 df-inf 9375 df-oi 9442 df-card 9871 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-div 11809 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-q 12866 df-rp 12908 df-xneg 13025 df-xadd 13026 df-xmul 13027 df-ioo 13260 df-icc 13263 df-fz 13417 df-fzo 13560 df-seq 13899 df-exp 13960 df-hash 14223 df-cj 14976 df-re 14977 df-im 14978 df-sqrt 15112 df-abs 15113 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-starv 17140 df-sca 17141 df-vsca 17142 df-ip 17143 df-tset 17144 df-ple 17145 df-ds 17147 df-unif 17148 df-hom 17149 df-cco 17150 df-rest 17296 df-topn 17297 df-0g 17315 df-gsum 17316 df-topgen 17317 df-pt 17318 df-prds 17321 df-xrs 17376 df-qtop 17381 df-imas 17382 df-xps 17384 df-mre 17458 df-mrc 17459 df-acs 17461 df-mgm 18489 df-sgrp 18538 df-mnd 18549 df-submnd 18594 df-mulg 18864 df-cntz 19088 df-cmn 19555 df-psmet 20773 df-xmet 20774 df-met 20775 df-bl 20776 df-mopn 20777 df-cnfld 20782 df-top 22227 df-topon 22244 df-topsp 22266 df-bases 22280 df-cn 22562 df-cnp 22563 df-tx 22897 df-hmeo 23090 df-xms 23657 df-ms 23658 df-tms 23659 df-cncf 24225 |
This theorem is referenced by: cnheiborlem 24301 mbfimaopnlem 25003 tpr2rico 32362 |
Copyright terms: Public domain | W3C validator |