MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrehmeo Structured version   Visualization version   GIF version

Theorem cnrehmeo 24878
Description: The canonical bijection from (ℝ × ℝ) to described in cnref1o 12883 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) Avoid ax-mulf 11086. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
cnrehmeo.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnrehmeo.2 𝐽 = (topGen‘ran (,))
cnrehmeo.3 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnrehmeo 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem cnrehmeo
Dummy variables 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 cnrehmeo.2 . . . . . . 7 𝐽 = (topGen‘ran (,))
3 retopon 24678 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
42, 3eqeltri 2827 . . . . . 6 𝐽 ∈ (TopOn‘ℝ)
54a1i 11 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℝ))
6 cnrehmeo.3 . . . . . . . 8 𝐾 = (TopOpen‘ℂfld)
76cnfldtop 24698 . . . . . . 7 𝐾 ∈ Top
8 cnrest2r 23202 . . . . . . 7 (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
97, 8mp1i 13 . . . . . 6 (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
105, 5cnmpt1st 23583 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116tgioo2 24718 . . . . . . . . 9 (topGen‘ran (,)) = (𝐾t ℝ)
122, 11eqtri 2754 . . . . . . . 8 𝐽 = (𝐾t ℝ)
1312oveq2i 7357 . . . . . . 7 ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾t ℝ))
1410, 13eleqtrdi 2841 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
159, 14sseldd 3930 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
166cnfldtopon 24697 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
1716a1i 11 . . . . . . 7 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
18 ax-icn 11065 . . . . . . . 8 i ∈ ℂ
1918a1i 11 . . . . . . 7 (⊤ → i ∈ ℂ)
205, 5, 17, 19cnmpt2c 23585 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
215, 5cnmpt2nd 23584 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2221, 13eleqtrdi 2841 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
239, 22sseldd 3930 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
246mpomulcn 24785 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2524a1i 11 . . . . . 6 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
26 oveq12 7355 . . . . . 6 ((𝑢 = i ∧ 𝑣 = 𝑦) → (𝑢 · 𝑣) = (i · 𝑦))
275, 5, 20, 23, 17, 17, 25, 26cnmpt22 23589 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
286addcn 24781 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2928a1i 11 . . . . 5 (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
305, 5, 15, 27, 29cnmpt22f 23590 . . . 4 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
311, 30eqeltrid 2835 . . 3 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
321cnrecnv 15072 . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
33 ref 15019 . . . . . . . 8 ℜ:ℂ⟶ℝ
3433a1i 11 . . . . . . 7 (⊤ → ℜ:ℂ⟶ℝ)
3534feqmptd 6890 . . . . . 6 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)))
36 recncf 24822 . . . . . . 7 ℜ ∈ (ℂ–cn→ℝ)
37 ssid 3952 . . . . . . . 8 ℂ ⊆ ℂ
38 ax-resscn 11063 . . . . . . . 8 ℝ ⊆ ℂ
3916toponrestid 22836 . . . . . . . . 9 𝐾 = (𝐾t ℂ)
406, 39, 12cncfcn 24830 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽))
4137, 38, 40mp2an 692 . . . . . . 7 (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)
4236, 41eleqtri 2829 . . . . . 6 ℜ ∈ (𝐾 Cn 𝐽)
4335, 42eqeltrrdi 2840 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽))
44 imf 15020 . . . . . . . 8 ℑ:ℂ⟶ℝ
4544a1i 11 . . . . . . 7 (⊤ → ℑ:ℂ⟶ℝ)
4645feqmptd 6890 . . . . . 6 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)))
47 imcncf 24823 . . . . . . 7 ℑ ∈ (ℂ–cn→ℝ)
4847, 41eleqtri 2829 . . . . . 6 ℑ ∈ (𝐾 Cn 𝐽)
4946, 48eqeltrrdi 2840 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽))
5017, 43, 49cnmpt1t 23580 . . . 4 (⊤ → (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
5132, 50eqeltrid 2835 . . 3 (⊤ → 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
52 ishmeo 23674 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))))
5331, 51, 52sylanbrc 583 . 2 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾))
5453mptru 1548 1 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2111  wss 3897  cop 4579  cmpt 5170  ccnv 5613  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11004  cr 11005  ici 11008   + caddc 11009   · cmul 11011  (,)cioo 13245  cre 15004  cim 15005  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Topctop 22808  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  Homeochmeo 23668  cnccncf 24796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798
This theorem is referenced by:  cnheiborlem  24880  mbfimaopnlem  25583  tpr2rico  33925
  Copyright terms: Public domain W3C validator