![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrehmeo | Structured version Visualization version GIF version |
Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 12136 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
cnrehmeo.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnrehmeo | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retopon 22979 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
4 | 2, 3 | eqeltri 2855 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
6 | cnrehmeo.3 | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 22999 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
8 | cnrest2r 21503 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
9 | 7, 8 | mp1i 13 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
10 | 5, 5 | cnmpt1st 21884 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6 | tgioo2 23018 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
12 | 2, 11 | eqtri 2802 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
13 | 12 | oveq2i 6935 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
14 | 10, 13 | syl6eleq 2869 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
15 | 9, 14 | sseldd 3822 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
16 | 6 | cnfldtopon 22998 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
18 | ax-icn 10333 | . . . . . . . 8 ⊢ i ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
20 | 5, 5, 17, 19 | cnmpt2c 21886 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
21 | 5, 5 | cnmpt2nd 21885 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 21, 13 | syl6eleq 2869 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
23 | 9, 22 | sseldd 3822 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 6 | mulcn 23082 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 21891 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
27 | 6 | addcn 23080 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 21891 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
30 | 1, 29 | syl5eqel 2863 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
31 | 1 | cnrecnv 14316 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | ref 14263 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
34 | 33 | feqmptd 6511 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
35 | recncf 23117 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
36 | ssid 3842 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
37 | ax-resscn 10331 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
38 | 16 | toponrestid 21137 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
39 | 6, 38, 12 | cncfcn 23124 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
40 | 36, 37, 39 | mp2an 682 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
41 | 35, 40 | eleqtri 2857 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
42 | 34, 41 | syl6eqelr 2868 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
43 | imf 14264 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
44 | 43 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
45 | 44 | feqmptd 6511 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
46 | imcncf 23118 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
47 | 46, 40 | eleqtri 2857 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
48 | 45, 47 | syl6eqelr 2868 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
49 | 17, 42, 48 | cnmpt1t 21881 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
50 | 31, 49 | syl5eqel 2863 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
51 | ishmeo 21975 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
52 | 30, 50, 51 | sylanbrc 578 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
53 | 52 | mptru 1609 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ⊤wtru 1602 ∈ wcel 2107 ⊆ wss 3792 〈cop 4404 ↦ cmpt 4967 ◡ccnv 5356 ran crn 5358 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ↦ cmpt2 6926 ℂcc 10272 ℝcr 10273 ici 10276 + caddc 10277 · cmul 10279 (,)cioo 12491 ℜcre 14248 ℑcim 14249 ↾t crest 16471 TopOpenctopn 16472 topGenctg 16488 ℂfldccnfld 20146 Topctop 21109 TopOnctopon 21126 Cn ccn 21440 ×t ctx 21776 Homeochmeo 21969 –cn→ccncf 23091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-icc 12498 df-fz 12648 df-fzo 12789 df-seq 13124 df-exp 13183 df-hash 13440 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cn 21443 df-cnp 21444 df-tx 21778 df-hmeo 21971 df-xms 22537 df-ms 22538 df-tms 22539 df-cncf 23093 |
This theorem is referenced by: cnheiborlem 23165 mbfimaopnlem 23863 tpr2rico 30560 |
Copyright terms: Public domain | W3C validator |