MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmcn Structured version   Visualization version   GIF version

Theorem vmcn 29641
Description: Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vmcn.c 𝐶 = (IndMet‘𝑈)
vmcn.j 𝐽 = (MetOpen‘𝐶)
vmcn.m 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
vmcn (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vmcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2736 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2736 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 vmcn.m . . 3 𝑀 = ( −𝑣𝑈)
51, 2, 3, 4nvmfval 29586 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
6 vmcn.c . . . . 5 𝐶 = (IndMet‘𝑈)
71, 6imsxmet 29634 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
8 vmcn.j . . . . 5 𝐽 = (MetOpen‘𝐶)
98mopntopon 23792 . . . 4 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
107, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1110, 10cnmpt1st 23019 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
12 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 24146 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1413a1i 11 . . . . 5 (𝑈 ∈ NrmCVec → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
15 neg1cn 12267 . . . . . 6 -1 ∈ ℂ
1615a1i 11 . . . . 5 (𝑈 ∈ NrmCVec → -1 ∈ ℂ)
1710, 10, 14, 16cnmpt2c 23021 . . . 4 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ -1) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)))
1810, 10cnmpt2nd 23020 . . . 4 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
196, 8, 3, 12smcn 29640 . . . 4 (𝑈 ∈ NrmCVec → ( ·𝑠OLD𝑈) ∈ (((TopOpen‘ℂfld) ×t 𝐽) Cn 𝐽))
2010, 10, 17, 18, 19cnmpt22f 23026 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (-1( ·𝑠OLD𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
216, 8, 2vacn 29636 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2210, 10, 11, 20, 21cnmpt22f 23026 . 2 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
235, 22eqeltrd 2838 1 (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cmpo 7359  cc 11049  1c1 11052  -cneg 11386  TopOpenctopn 17303  ∞Metcxmet 20781  MetOpencmopn 20786  fldccnfld 20796  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  𝑣 cnsb 29531  IndMetcims 29533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543
This theorem is referenced by:  hmopidmchi  31093
  Copyright terms: Public domain W3C validator