MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmcn Structured version   Visualization version   GIF version

Theorem vmcn 30677
Description: Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vmcn.c 𝐶 = (IndMet‘𝑈)
vmcn.j 𝐽 = (MetOpen‘𝐶)
vmcn.m 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
vmcn (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vmcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2731 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2731 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 vmcn.m . . 3 𝑀 = ( −𝑣𝑈)
51, 2, 3, 4nvmfval 30622 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
6 vmcn.c . . . . 5 𝐶 = (IndMet‘𝑈)
71, 6imsxmet 30670 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
8 vmcn.j . . . . 5 𝐽 = (MetOpen‘𝐶)
98mopntopon 24355 . . . 4 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
107, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1110, 10cnmpt1st 23584 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
12 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 24698 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1413a1i 11 . . . . 5 (𝑈 ∈ NrmCVec → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
15 neg1cn 12110 . . . . . 6 -1 ∈ ℂ
1615a1i 11 . . . . 5 (𝑈 ∈ NrmCVec → -1 ∈ ℂ)
1710, 10, 14, 16cnmpt2c 23586 . . . 4 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ -1) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)))
1810, 10cnmpt2nd 23585 . . . 4 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
196, 8, 3, 12smcn 30676 . . . 4 (𝑈 ∈ NrmCVec → ( ·𝑠OLD𝑈) ∈ (((TopOpen‘ℂfld) ×t 𝐽) Cn 𝐽))
2010, 10, 17, 18, 19cnmpt22f 23591 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (-1( ·𝑠OLD𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
216, 8, 2vacn 30672 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2210, 10, 11, 20, 21cnmpt22f 23591 . 2 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
235, 22eqeltrd 2831 1 (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11004  1c1 11007  -cneg 11345  TopOpenctopn 17325  ∞Metcxmet 21277  MetOpencmopn 21282  fldccnfld 21292  TopOnctopon 22826   Cn ccn 23140   ×t ctx 23476  NrmCVeccnv 30562   +𝑣 cpv 30563  BaseSetcba 30564   ·𝑠OLD cns 30565  𝑣 cnsb 30567  IndMetcims 30569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-vs 30577  df-nmcv 30578  df-ims 30579
This theorem is referenced by:  hmopidmchi  32129
  Copyright terms: Public domain W3C validator