MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrehmeoOLD Structured version   Visualization version   GIF version

Theorem cnrehmeoOLD 24887
Description: Obsolete version of cnrehmeo 24886 as of 9-Apr-2025. (Contributed by Mario Carneiro, 25-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnrehmeoOLD.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnrehmeoOLD.2 𝐽 = (topGen‘ran (,))
cnrehmeoOLD.3 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnrehmeoOLD 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem cnrehmeoOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnrehmeoOLD.1 . . . 4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 cnrehmeoOLD.2 . . . . . . 7 𝐽 = (topGen‘ran (,))
3 retopon 24686 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
42, 3eqeltri 2824 . . . . . 6 𝐽 ∈ (TopOn‘ℝ)
54a1i 11 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℝ))
6 cnrehmeoOLD.3 . . . . . . . 8 𝐾 = (TopOpen‘ℂfld)
76cnfldtop 24706 . . . . . . 7 𝐾 ∈ Top
8 cnrest2r 23209 . . . . . . 7 (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
97, 8mp1i 13 . . . . . 6 (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
105, 5cnmpt1st 23590 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116tgioo2 24726 . . . . . . . . 9 (topGen‘ran (,)) = (𝐾t ℝ)
122, 11eqtri 2752 . . . . . . . 8 𝐽 = (𝐾t ℝ)
1312oveq2i 7381 . . . . . . 7 ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾t ℝ))
1410, 13eleqtrdi 2838 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
159, 14sseldd 3944 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
166cnfldtopon 24705 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
1716a1i 11 . . . . . . 7 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
18 ax-icn 11106 . . . . . . . 8 i ∈ ℂ
1918a1i 11 . . . . . . 7 (⊤ → i ∈ ℂ)
205, 5, 17, 19cnmpt2c 23592 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
215, 5cnmpt2nd 23591 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2221, 13eleqtrdi 2838 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
239, 22sseldd 3944 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
246mulcn 24791 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2524a1i 11 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
265, 5, 20, 23, 25cnmpt22f 23597 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
276addcn 24789 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2827a1i 11 . . . . 5 (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
295, 5, 15, 26, 28cnmpt22f 23597 . . . 4 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
301, 29eqeltrid 2832 . . 3 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
311cnrecnv 15109 . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
32 ref 15056 . . . . . . . 8 ℜ:ℂ⟶ℝ
3332a1i 11 . . . . . . 7 (⊤ → ℜ:ℂ⟶ℝ)
3433feqmptd 6912 . . . . . 6 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)))
35 recncf 24830 . . . . . . 7 ℜ ∈ (ℂ–cn→ℝ)
36 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
37 ax-resscn 11104 . . . . . . . 8 ℝ ⊆ ℂ
3816toponrestid 22843 . . . . . . . . 9 𝐾 = (𝐾t ℂ)
396, 38, 12cncfcn 24838 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽))
4036, 37, 39mp2an 692 . . . . . . 7 (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)
4135, 40eleqtri 2826 . . . . . 6 ℜ ∈ (𝐾 Cn 𝐽)
4234, 41eqeltrrdi 2837 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽))
43 imf 15057 . . . . . . . 8 ℑ:ℂ⟶ℝ
4443a1i 11 . . . . . . 7 (⊤ → ℑ:ℂ⟶ℝ)
4544feqmptd 6912 . . . . . 6 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)))
46 imcncf 24831 . . . . . . 7 ℑ ∈ (ℂ–cn→ℝ)
4746, 40eleqtri 2826 . . . . . 6 ℑ ∈ (𝐾 Cn 𝐽)
4845, 47eqeltrrdi 2837 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽))
4917, 42, 48cnmpt1t 23587 . . . 4 (⊤ → (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
5031, 49eqeltrid 2832 . . 3 (⊤ → 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
51 ishmeo 23681 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))))
5230, 50, 51sylanbrc 583 . 2 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾))
5352mptru 1547 1 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  wss 3911  cop 4591  cmpt 5183  ccnv 5630  ran crn 5632  wf 6496  cfv 6500  (class class class)co 7370  cmpo 7372  cc 11045  cr 11046  ici 11049   + caddc 11050   · cmul 11052  (,)cioo 13285  cre 15041  cim 15042  t crest 17361  TopOpenctopn 17362  topGenctg 17378  fldccnfld 21298  Topctop 22815  TopOnctopon 22832   Cn ccn 23146   ×t ctx 23482  Homeochmeo 23675  cnccncf 24804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-fi 9339  df-sup 9370  df-inf 9371  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-ioo 13289  df-icc 13292  df-fz 13448  df-fzo 13595  df-seq 13946  df-exp 14006  df-hash 14275  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-submnd 18695  df-mulg 18984  df-cntz 19233  df-cmn 19698  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-cnfld 21299  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22868  df-cn 23149  df-cnp 23150  df-tx 23484  df-hmeo 23677  df-xms 24243  df-ms 24244  df-tms 24245  df-cncf 24806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator