![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrehmeoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnrehmeo 24877 as of 9-Apr-2025. (Contributed by Mario Carneiro, 25-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnrehmeoOLD.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
cnrehmeoOLD.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
cnrehmeoOLD.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnrehmeoOLD | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeoOLD.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | cnrehmeoOLD.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retopon 24679 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
4 | 2, 3 | eqeltri 2825 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
6 | cnrehmeoOLD.3 | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24699 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
8 | cnrest2r 23190 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
9 | 7, 8 | mp1i 13 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
10 | 5, 5 | cnmpt1st 23571 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6 | tgioo2 24718 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
12 | 2, 11 | eqtri 2756 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
13 | 12 | oveq2i 7431 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
14 | 10, 13 | eleqtrdi 2839 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
15 | 9, 14 | sseldd 3981 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
16 | 6 | cnfldtopon 24698 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
18 | ax-icn 11197 | . . . . . . . 8 ⊢ i ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
20 | 5, 5, 17, 19 | cnmpt2c 23573 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
21 | 5, 5 | cnmpt2nd 23572 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 21, 13 | eleqtrdi 2839 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
23 | 9, 22 | sseldd 3981 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 6 | mulcn 24782 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 23578 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
27 | 6 | addcn 24780 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 23578 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
30 | 1, 29 | eqeltrid 2833 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
31 | 1 | cnrecnv 15144 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | ref 15091 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
34 | 33 | feqmptd 6967 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
35 | recncf 24821 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
36 | ssid 4002 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
37 | ax-resscn 11195 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
38 | 16 | toponrestid 22822 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
39 | 6, 38, 12 | cncfcn 24829 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
40 | 36, 37, 39 | mp2an 691 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
41 | 35, 40 | eleqtri 2827 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
42 | 34, 41 | eqeltrrdi 2838 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
43 | imf 15092 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
44 | 43 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
45 | 44 | feqmptd 6967 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
46 | imcncf 24822 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
47 | 46, 40 | eleqtri 2827 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
48 | 45, 47 | eqeltrrdi 2838 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
49 | 17, 42, 48 | cnmpt1t 23568 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
50 | 31, 49 | eqeltrid 2833 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
51 | ishmeo 23662 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
52 | 30, 50, 51 | sylanbrc 582 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
53 | 52 | mptru 1541 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ⊆ wss 3947 〈cop 4635 ↦ cmpt 5231 ◡ccnv 5677 ran crn 5679 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 ℂcc 11136 ℝcr 11137 ici 11140 + caddc 11141 · cmul 11143 (,)cioo 13356 ℜcre 15076 ℑcim 15077 ↾t crest 17401 TopOpenctopn 17402 topGenctg 17418 ℂfldccnfld 21278 Topctop 22794 TopOnctopon 22811 Cn ccn 23127 ×t ctx 23463 Homeochmeo 23656 –cn→ccncf 24795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |