![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrehmeoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnrehmeo 24699 as of 9-Apr-2025. (Contributed by Mario Carneiro, 25-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnrehmeoOLD.1 | β’ πΉ = (π₯ β β, π¦ β β β¦ (π₯ + (i Β· π¦))) |
cnrehmeoOLD.2 | β’ π½ = (topGenβran (,)) |
cnrehmeoOLD.3 | β’ πΎ = (TopOpenββfld) |
Ref | Expression |
---|---|
cnrehmeoOLD | β’ πΉ β ((π½ Γt π½)HomeoπΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeoOLD.1 | . . . 4 β’ πΉ = (π₯ β β, π¦ β β β¦ (π₯ + (i Β· π¦))) | |
2 | cnrehmeoOLD.2 | . . . . . . 7 β’ π½ = (topGenβran (,)) | |
3 | retopon 24501 | . . . . . . 7 β’ (topGenβran (,)) β (TopOnββ) | |
4 | 2, 3 | eqeltri 2828 | . . . . . 6 β’ π½ β (TopOnββ) |
5 | 4 | a1i 11 | . . . . 5 β’ (β€ β π½ β (TopOnββ)) |
6 | cnrehmeoOLD.3 | . . . . . . . 8 β’ πΎ = (TopOpenββfld) | |
7 | 6 | cnfldtop 24521 | . . . . . . 7 β’ πΎ β Top |
8 | cnrest2r 23012 | . . . . . . 7 β’ (πΎ β Top β ((π½ Γt π½) Cn (πΎ βΎt β)) β ((π½ Γt π½) Cn πΎ)) | |
9 | 7, 8 | mp1i 13 | . . . . . 6 β’ (β€ β ((π½ Γt π½) Cn (πΎ βΎt β)) β ((π½ Γt π½) Cn πΎ)) |
10 | 5, 5 | cnmpt1st 23393 | . . . . . . 7 β’ (β€ β (π₯ β β, π¦ β β β¦ π₯) β ((π½ Γt π½) Cn π½)) |
11 | 6 | tgioo2 24540 | . . . . . . . . 9 β’ (topGenβran (,)) = (πΎ βΎt β) |
12 | 2, 11 | eqtri 2759 | . . . . . . . 8 β’ π½ = (πΎ βΎt β) |
13 | 12 | oveq2i 7423 | . . . . . . 7 β’ ((π½ Γt π½) Cn π½) = ((π½ Γt π½) Cn (πΎ βΎt β)) |
14 | 10, 13 | eleqtrdi 2842 | . . . . . 6 β’ (β€ β (π₯ β β, π¦ β β β¦ π₯) β ((π½ Γt π½) Cn (πΎ βΎt β))) |
15 | 9, 14 | sseldd 3983 | . . . . 5 β’ (β€ β (π₯ β β, π¦ β β β¦ π₯) β ((π½ Γt π½) Cn πΎ)) |
16 | 6 | cnfldtopon 24520 | . . . . . . . 8 β’ πΎ β (TopOnββ) |
17 | 16 | a1i 11 | . . . . . . 7 β’ (β€ β πΎ β (TopOnββ)) |
18 | ax-icn 11173 | . . . . . . . 8 β’ i β β | |
19 | 18 | a1i 11 | . . . . . . 7 β’ (β€ β i β β) |
20 | 5, 5, 17, 19 | cnmpt2c 23395 | . . . . . 6 β’ (β€ β (π₯ β β, π¦ β β β¦ i) β ((π½ Γt π½) Cn πΎ)) |
21 | 5, 5 | cnmpt2nd 23394 | . . . . . . . 8 β’ (β€ β (π₯ β β, π¦ β β β¦ π¦) β ((π½ Γt π½) Cn π½)) |
22 | 21, 13 | eleqtrdi 2842 | . . . . . . 7 β’ (β€ β (π₯ β β, π¦ β β β¦ π¦) β ((π½ Γt π½) Cn (πΎ βΎt β))) |
23 | 9, 22 | sseldd 3983 | . . . . . 6 β’ (β€ β (π₯ β β, π¦ β β β¦ π¦) β ((π½ Γt π½) Cn πΎ)) |
24 | 6 | mulcn 24604 | . . . . . . 7 β’ Β· β ((πΎ Γt πΎ) Cn πΎ) |
25 | 24 | a1i 11 | . . . . . 6 β’ (β€ β Β· β ((πΎ Γt πΎ) Cn πΎ)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 23400 | . . . . 5 β’ (β€ β (π₯ β β, π¦ β β β¦ (i Β· π¦)) β ((π½ Γt π½) Cn πΎ)) |
27 | 6 | addcn 24602 | . . . . . 6 β’ + β ((πΎ Γt πΎ) Cn πΎ) |
28 | 27 | a1i 11 | . . . . 5 β’ (β€ β + β ((πΎ Γt πΎ) Cn πΎ)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 23400 | . . . 4 β’ (β€ β (π₯ β β, π¦ β β β¦ (π₯ + (i Β· π¦))) β ((π½ Γt π½) Cn πΎ)) |
30 | 1, 29 | eqeltrid 2836 | . . 3 β’ (β€ β πΉ β ((π½ Γt π½) Cn πΎ)) |
31 | 1 | cnrecnv 15117 | . . . 4 β’ β‘πΉ = (π§ β β β¦ β¨(ββπ§), (ββπ§)β©) |
32 | ref 15064 | . . . . . . . 8 β’ β:ββΆβ | |
33 | 32 | a1i 11 | . . . . . . 7 β’ (β€ β β:ββΆβ) |
34 | 33 | feqmptd 6960 | . . . . . 6 β’ (β€ β β = (π§ β β β¦ (ββπ§))) |
35 | recncf 24643 | . . . . . . 7 β’ β β (ββcnββ) | |
36 | ssid 4004 | . . . . . . . 8 β’ β β β | |
37 | ax-resscn 11171 | . . . . . . . 8 β’ β β β | |
38 | 16 | toponrestid 22644 | . . . . . . . . 9 β’ πΎ = (πΎ βΎt β) |
39 | 6, 38, 12 | cncfcn 24651 | . . . . . . . 8 β’ ((β β β β§ β β β) β (ββcnββ) = (πΎ Cn π½)) |
40 | 36, 37, 39 | mp2an 689 | . . . . . . 7 β’ (ββcnββ) = (πΎ Cn π½) |
41 | 35, 40 | eleqtri 2830 | . . . . . 6 β’ β β (πΎ Cn π½) |
42 | 34, 41 | eqeltrrdi 2841 | . . . . 5 β’ (β€ β (π§ β β β¦ (ββπ§)) β (πΎ Cn π½)) |
43 | imf 15065 | . . . . . . . 8 β’ β:ββΆβ | |
44 | 43 | a1i 11 | . . . . . . 7 β’ (β€ β β:ββΆβ) |
45 | 44 | feqmptd 6960 | . . . . . 6 β’ (β€ β β = (π§ β β β¦ (ββπ§))) |
46 | imcncf 24644 | . . . . . . 7 β’ β β (ββcnββ) | |
47 | 46, 40 | eleqtri 2830 | . . . . . 6 β’ β β (πΎ Cn π½) |
48 | 45, 47 | eqeltrrdi 2841 | . . . . 5 β’ (β€ β (π§ β β β¦ (ββπ§)) β (πΎ Cn π½)) |
49 | 17, 42, 48 | cnmpt1t 23390 | . . . 4 β’ (β€ β (π§ β β β¦ β¨(ββπ§), (ββπ§)β©) β (πΎ Cn (π½ Γt π½))) |
50 | 31, 49 | eqeltrid 2836 | . . 3 β’ (β€ β β‘πΉ β (πΎ Cn (π½ Γt π½))) |
51 | ishmeo 23484 | . . 3 β’ (πΉ β ((π½ Γt π½)HomeoπΎ) β (πΉ β ((π½ Γt π½) Cn πΎ) β§ β‘πΉ β (πΎ Cn (π½ Γt π½)))) | |
52 | 30, 50, 51 | sylanbrc 582 | . 2 β’ (β€ β πΉ β ((π½ Γt π½)HomeoπΎ)) |
53 | 52 | mptru 1547 | 1 β’ πΉ β ((π½ Γt π½)HomeoπΎ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β€wtru 1541 β wcel 2105 β wss 3948 β¨cop 4634 β¦ cmpt 5231 β‘ccnv 5675 ran crn 5677 βΆwf 6539 βcfv 6543 (class class class)co 7412 β cmpo 7414 βcc 11112 βcr 11113 ici 11116 + caddc 11117 Β· cmul 11119 (,)cioo 13329 βcre 15049 βcim 15050 βΎt crest 17371 TopOpenctopn 17372 topGenctg 17388 βfldccnfld 21145 Topctop 22616 TopOnctopon 22633 Cn ccn 22949 Γt ctx 23285 Homeochmeo 23478 βcnβccncf 24617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cn 22952 df-cnp 22953 df-tx 23287 df-hmeo 23480 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |