| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnrehmeoOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnrehmeo 24900 as of 9-Apr-2025. (Contributed by Mario Carneiro, 25-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnrehmeoOLD.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| cnrehmeoOLD.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
| cnrehmeoOLD.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnrehmeoOLD | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeoOLD.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
| 2 | cnrehmeoOLD.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retopon 24700 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 4 | 2, 3 | eqeltri 2830 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
| 6 | cnrehmeoOLD.3 | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 7 | 6 | cnfldtop 24720 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r 23223 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
| 9 | 7, 8 | mp1i 13 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 10 | 5, 5 | cnmpt1st 23604 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6 | tgioo2 24740 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 12 | 2, 11 | eqtri 2758 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 13 | 12 | oveq2i 7414 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
| 14 | 10, 13 | eleqtrdi 2844 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 15 | 9, 14 | sseldd 3959 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 16 | 6 | cnfldtopon 24719 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 18 | ax-icn 11186 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 20 | 5, 5, 17, 19 | cnmpt2c 23606 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 21 | 5, 5 | cnmpt2nd 23605 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 21, 13 | eleqtrdi 2844 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 23 | 9, 22 | sseldd 3959 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 24 | 6 | mulcn 24805 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 26 | 5, 5, 20, 23, 25 | cnmpt22f 23611 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 27 | 6 | addcn 24803 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 29 | 5, 5, 15, 26, 28 | cnmpt22f 23611 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 30 | 1, 29 | eqeltrid 2838 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 31 | 1 | cnrecnv 15182 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 32 | ref 15129 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
| 33 | 32 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
| 34 | 33 | feqmptd 6946 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
| 35 | recncf 24844 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
| 36 | ssid 3981 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 37 | ax-resscn 11184 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 38 | 16 | toponrestid 22857 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
| 39 | 6, 38, 12 | cncfcn 24852 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
| 40 | 36, 37, 39 | mp2an 692 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
| 41 | 35, 40 | eleqtri 2832 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
| 42 | 34, 41 | eqeltrrdi 2843 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 43 | imf 15130 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
| 44 | 43 | a1i 11 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
| 45 | 44 | feqmptd 6946 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
| 46 | imcncf 24845 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
| 47 | 46, 40 | eleqtri 2832 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
| 48 | 45, 47 | eqeltrrdi 2843 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 49 | 17, 42, 48 | cnmpt1t 23601 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 50 | 31, 49 | eqeltrid 2838 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 51 | ishmeo 23695 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
| 52 | 30, 50, 51 | sylanbrc 583 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
| 53 | 52 | mptru 1547 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ⊆ wss 3926 〈cop 4607 ↦ cmpt 5201 ◡ccnv 5653 ran crn 5655 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 ℝcr 11126 ici 11129 + caddc 11130 · cmul 11132 (,)cioo 13360 ℜcre 15114 ℑcim 15115 ↾t crest 17432 TopOpenctopn 17433 topGenctg 17449 ℂfldccnfld 21313 Topctop 22829 TopOnctopon 22846 Cn ccn 23160 ×t ctx 23496 Homeochmeo 23689 –cn→ccncf 24818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cn 23163 df-cnp 23164 df-tx 23498 df-hmeo 23691 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |