MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1st Structured version   Visualization version   GIF version

Theorem cofu1st 16750
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofu1st (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))

Proof of Theorem cofu1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . 4 𝐵 = (Base‘𝐶)
2 cofuval.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 16749 . . 3 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
54fveq2d 6337 . 2 (𝜑 → (1st ‘(𝐺func 𝐹)) = (1st ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
6 fvex 6344 . . . 4 (1st𝐺) ∈ V
7 fvex 6344 . . . 4 (1st𝐹) ∈ V
86, 7coex 7269 . . 3 ((1st𝐺) ∘ (1st𝐹)) ∈ V
91fvexi 6345 . . . 4 𝐵 ∈ V
109, 9mpt2ex 7401 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
118, 10op1st 7327 . 2 (1st ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = ((1st𝐺) ∘ (1st𝐹))
125, 11syl6eq 2821 1 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4323  ccom 5254  cfv 6030  (class class class)co 6796  cmpt2 6798  1st c1st 7317  2nd c2nd 7318  Basecbs 16064   Func cfunc 16721  func ccofu 16723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-map 8015  df-ixp 8067  df-func 16725  df-cofu 16727
This theorem is referenced by:  cofu1  16751  cofucl  16755  cofuass  16756  catciso  16964
  Copyright terms: Public domain W3C validator