![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofu1st | Structured version Visualization version GIF version |
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
Ref | Expression |
---|---|
cofu1st | ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | 1, 2, 3 | cofuval 17773 | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = ⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩) |
5 | 4 | fveq2d 6847 | . 2 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = (1st ‘⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩)) |
6 | fvex 6856 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
7 | fvex 6856 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
8 | 6, 7 | coex 7868 | . . 3 ⊢ ((1st ‘𝐺) ∘ (1st ‘𝐹)) ∈ V |
9 | 1 | fvexi 6857 | . . . 4 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 8013 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) ∈ V |
11 | 8, 10 | op1st 7930 | . 2 ⊢ (1st ‘⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩) = ((1st ‘𝐺) ∘ (1st ‘𝐹)) |
12 | 5, 11 | eqtrdi 2789 | 1 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 ∘ ccom 5638 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 Basecbs 17088 Func cfunc 17745 ∘func ccofu 17747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-map 8770 df-ixp 8839 df-func 17749 df-cofu 17751 |
This theorem is referenced by: cofu1 17775 cofucl 17779 cofuass 17780 catciso 18002 |
Copyright terms: Public domain | W3C validator |