![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofu1st | Structured version Visualization version GIF version |
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
Ref | Expression |
---|---|
cofu1st | ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | 1, 2, 3 | cofuval 17831 | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = ⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩) |
5 | 4 | fveq2d 6895 | . 2 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = (1st ‘⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩)) |
6 | fvex 6904 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
7 | fvex 6904 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
8 | 6, 7 | coex 7920 | . . 3 ⊢ ((1st ‘𝐺) ∘ (1st ‘𝐹)) ∈ V |
9 | 1 | fvexi 6905 | . . . 4 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 8065 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) ∈ V |
11 | 8, 10 | op1st 7982 | . 2 ⊢ (1st ‘⟨((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))⟩) = ((1st ‘𝐺) ∘ (1st ‘𝐹)) |
12 | 5, 11 | eqtrdi 2788 | 1 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 1st c1st 7972 2nd c2nd 7973 Basecbs 17143 Func cfunc 17803 ∘func ccofu 17805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-ixp 8891 df-func 17807 df-cofu 17809 |
This theorem is referenced by: cofu1 17833 cofucl 17837 cofuass 17838 catciso 18060 |
Copyright terms: Public domain | W3C validator |