Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofu1 | Structured version Visualization version GIF version |
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
cofu1 | ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | 1, 2, 3 | cofu1st 17514 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
5 | 4 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋)) |
6 | eqid 2738 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | relfunc 17493 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
8 | 1st2ndbr 7856 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
9 | 7, 2, 8 | sylancr 586 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
10 | 1, 6, 9 | funcf1 17497 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
11 | cofu2nd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | fvco3 6849 | . . 3 ⊢ (((1st ‘𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋 ∈ 𝐵) → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) | |
13 | 10, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
14 | 5, 13 | eqtrd 2778 | 1 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ∘ ccom 5584 Rel wrel 5585 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 Func cfunc 17485 ∘func ccofu 17487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-ixp 8644 df-func 17489 df-cofu 17491 |
This theorem is referenced by: cofucl 17519 cofuass 17520 cofull 17566 cofth 17567 catciso 17742 1st2ndprf 17839 uncf1 17870 uncf2 17871 yonedalem21 17907 yonedalem22 17912 |
Copyright terms: Public domain | W3C validator |