| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofu1 | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cofu1 | ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 4 | 1, 2, 3 | cofu1st 17896 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
| 5 | 4 | fveq1d 6878 | . 2 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋)) |
| 6 | eqid 2735 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | relfunc 17875 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 8 | 1st2ndbr 8041 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 9 | 7, 2, 8 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 10 | 1, 6, 9 | funcf1 17879 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
| 11 | cofu2nd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | fvco3 6978 | . . 3 ⊢ (((1st ‘𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋 ∈ 𝐵) → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
| 14 | 5, 13 | eqtrd 2770 | 1 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ∘ ccom 5658 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Basecbs 17228 Func cfunc 17867 ∘func ccofu 17869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-ixp 8912 df-func 17871 df-cofu 17873 |
| This theorem is referenced by: cofucl 17901 cofuass 17902 cofull 17949 cofth 17950 catciso 18124 1st2ndprf 18218 uncf1 18248 uncf2 18249 yonedalem21 18285 yonedalem22 18290 cofuswapf1 49205 |
| Copyright terms: Public domain | W3C validator |