![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofu1 | Structured version Visualization version GIF version |
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
cofu1 | ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | 1, 2, 3 | cofu1st 17947 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺 ∘func 𝐹)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
5 | 4 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋)) |
6 | eqid 2740 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | relfunc 17926 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
8 | 1st2ndbr 8083 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
9 | 7, 2, 8 | sylancr 586 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
10 | 1, 6, 9 | funcf1 17930 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
11 | cofu2nd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | fvco3 7021 | . . 3 ⊢ (((1st ‘𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋 ∈ 𝐵) → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) | |
13 | 10, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
14 | 5, 13 | eqtrd 2780 | 1 ⊢ (𝜑 → ((1st ‘(𝐺 ∘func 𝐹))‘𝑋) = ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ∘ ccom 5704 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 Basecbs 17258 Func cfunc 17918 ∘func ccofu 17920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-func 17922 df-cofu 17924 |
This theorem is referenced by: cofucl 17952 cofuass 17953 cofull 18001 cofth 18002 catciso 18178 1st2ndprf 18275 uncf1 18306 uncf2 18307 yonedalem21 18343 yonedalem22 18348 |
Copyright terms: Public domain | W3C validator |