MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1 Structured version   Visualization version   GIF version

Theorem cofu1 17929
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cofu1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))

Proof of Theorem cofu1
StepHypRef Expression
1 cofuval.b . . . 4 𝐵 = (Base‘𝐶)
2 cofuval.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofu1st 17928 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
54fveq1d 6908 . 2 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = (((1st𝐺) ∘ (1st𝐹))‘𝑋))
6 eqid 2737 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 relfunc 17907 . . . . 5 Rel (𝐶 Func 𝐷)
8 1st2ndbr 8067 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
97, 2, 8sylancr 587 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
101, 6, 9funcf1 17911 . . 3 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
11 cofu2nd.x . . 3 (𝜑𝑋𝐵)
12 fvco3 7008 . . 3 (((1st𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋𝐵) → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
1310, 11, 12syl2anc 584 . 2 (𝜑 → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
145, 13eqtrd 2777 1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5143  ccom 5689  Rel wrel 5690  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  Basecbs 17247   Func cfunc 17899  func ccofu 17901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-ixp 8938  df-func 17903  df-cofu 17905
This theorem is referenced by:  cofucl  17933  cofuass  17934  cofull  17981  cofth  17982  catciso  18156  1st2ndprf  18251  uncf1  18281  uncf2  18282  yonedalem21  18318  yonedalem22  18323  cofuswapf1  48994
  Copyright terms: Public domain W3C validator