MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1 Structured version   Visualization version   GIF version

Theorem cofu1 17948
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cofu1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))

Proof of Theorem cofu1
StepHypRef Expression
1 cofuval.b . . . 4 𝐵 = (Base‘𝐶)
2 cofuval.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofu1st 17947 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
54fveq1d 6922 . 2 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = (((1st𝐺) ∘ (1st𝐹))‘𝑋))
6 eqid 2740 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 relfunc 17926 . . . . 5 Rel (𝐶 Func 𝐷)
8 1st2ndbr 8083 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
97, 2, 8sylancr 586 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
101, 6, 9funcf1 17930 . . 3 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
11 cofu2nd.x . . 3 (𝜑𝑋𝐵)
12 fvco3 7021 . . 3 (((1st𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋𝐵) → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
1310, 11, 12syl2anc 583 . 2 (𝜑 → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
145, 13eqtrd 2780 1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  ccom 5704  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Basecbs 17258   Func cfunc 17918  func ccofu 17920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ixp 8956  df-func 17922  df-cofu 17924
This theorem is referenced by:  cofucl  17952  cofuass  17953  cofull  18001  cofth  18002  catciso  18178  1st2ndprf  18275  uncf1  18306  uncf2  18307  yonedalem21  18343  yonedalem22  18348
  Copyright terms: Public domain W3C validator