MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1 Structured version   Visualization version   GIF version

Theorem cofu1 17935
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cofu1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))

Proof of Theorem cofu1
StepHypRef Expression
1 cofuval.b . . . 4 𝐵 = (Base‘𝐶)
2 cofuval.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofu1st 17934 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
54fveq1d 6909 . 2 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = (((1st𝐺) ∘ (1st𝐹))‘𝑋))
6 eqid 2735 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 relfunc 17913 . . . . 5 Rel (𝐶 Func 𝐷)
8 1st2ndbr 8066 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
97, 2, 8sylancr 587 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
101, 6, 9funcf1 17917 . . 3 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
11 cofu2nd.x . . 3 (𝜑𝑋𝐵)
12 fvco3 7008 . . 3 (((1st𝐹):𝐵⟶(Base‘𝐷) ∧ 𝑋𝐵) → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
1310, 11, 12syl2anc 584 . 2 (𝜑 → (((1st𝐺) ∘ (1st𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
145, 13eqtrd 2775 1 (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   class class class wbr 5148  ccom 5693  Rel wrel 5694  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Basecbs 17245   Func cfunc 17905  func ccofu 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-ixp 8937  df-func 17909  df-cofu 17911
This theorem is referenced by:  cofucl  17939  cofuass  17940  cofull  17988  cofth  17989  catciso  18165  1st2ndprf  18262  uncf1  18293  uncf2  18294  yonedalem21  18330  yonedalem22  18335
  Copyright terms: Public domain W3C validator