MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuass Structured version   Visualization version   GIF version

Theorem cofuass 17831
Description: Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuass.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
cofuass.h (𝜑𝐻 ∈ (𝐷 Func 𝐸))
cofuass.k (𝜑𝐾 ∈ (𝐸 Func 𝐹))
Assertion
Ref Expression
cofuass (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))

Proof of Theorem cofuass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6226 . . . 4 (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺)))
2 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofuass.h . . . . . 6 (𝜑𝐻 ∈ (𝐷 Func 𝐸))
4 cofuass.k . . . . . 6 (𝜑𝐾 ∈ (𝐸 Func 𝐹))
52, 3, 4cofu1st 17825 . . . . 5 (𝜑 → (1st ‘(𝐾func 𝐻)) = ((1st𝐾) ∘ (1st𝐻)))
65coeq1d 5815 . . . 4 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)))
7 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
8 cofuass.g . . . . . 6 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
97, 8, 3cofu1st 17825 . . . . 5 (𝜑 → (1st ‘(𝐻func 𝐺)) = ((1st𝐻) ∘ (1st𝐺)))
109coeq2d 5816 . . . 4 (𝜑 → ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺))))
111, 6, 103eqtr4a 2790 . . 3 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))))
12 coass 6226 . . . . 5 (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
1333ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐻 ∈ (𝐷 Func 𝐸))
1443ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐾 ∈ (𝐸 Func 𝐹))
15 relfunc 17804 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
16 1st2ndbr 8000 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1715, 8, 16sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
18173ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
197, 2, 18funcf1 17808 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
20 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2119, 20ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
22 simp3 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
2319, 22ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
242, 13, 14, 21, 23cofu2nd 17827 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))))
2524coeq1d 5815 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)))
2683ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐷))
277, 26, 13, 20cofu1 17826 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑥) = ((1st𝐻)‘((1st𝐺)‘𝑥)))
287, 26, 13, 22cofu1 17826 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑦) = ((1st𝐻)‘((1st𝐺)‘𝑦)))
2927, 28oveq12d 7387 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) = (((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))))
307, 26, 13, 20, 22cofu2nd 17827 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(𝐻func 𝐺))𝑦) = ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
3129, 30coeq12d 5818 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))))
3212, 25, 313eqtr4a 2790 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))
3332mpoeq3dva 7446 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦))))
3411, 33opeq12d 4841 . 2 (𝜑 → ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩ = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
353, 4cofucl 17830 . . 3 (𝜑 → (𝐾func 𝐻) ∈ (𝐷 Func 𝐹))
367, 8, 35cofuval 17824 . 2 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩)
378, 3cofucl 17830 . . 3 (𝜑 → (𝐻func 𝐺) ∈ (𝐶 Func 𝐸))
387, 37, 4cofuval 17824 . 2 (𝜑 → (𝐾func (𝐻func 𝐺)) = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
3934, 36, 383eqtr4d 2774 1 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  ccom 5635  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155   Func cfunc 17796  func ccofu 17798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802
This theorem is referenced by:  catccatid  18048  uobeqw  49201
  Copyright terms: Public domain W3C validator