MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuass Structured version   Visualization version   GIF version

Theorem cofuass 17151
Description: Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuass.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
cofuass.h (𝜑𝐻 ∈ (𝐷 Func 𝐸))
cofuass.k (𝜑𝐾 ∈ (𝐸 Func 𝐹))
Assertion
Ref Expression
cofuass (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))

Proof of Theorem cofuass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6085 . . . 4 (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺)))
2 eqid 2798 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofuass.h . . . . . 6 (𝜑𝐻 ∈ (𝐷 Func 𝐸))
4 cofuass.k . . . . . 6 (𝜑𝐾 ∈ (𝐸 Func 𝐹))
52, 3, 4cofu1st 17145 . . . . 5 (𝜑 → (1st ‘(𝐾func 𝐻)) = ((1st𝐾) ∘ (1st𝐻)))
65coeq1d 5696 . . . 4 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)))
7 eqid 2798 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
8 cofuass.g . . . . . 6 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
97, 8, 3cofu1st 17145 . . . . 5 (𝜑 → (1st ‘(𝐻func 𝐺)) = ((1st𝐻) ∘ (1st𝐺)))
109coeq2d 5697 . . . 4 (𝜑 → ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺))))
111, 6, 103eqtr4a 2859 . . 3 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))))
12 coass 6085 . . . . 5 (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
1333ad2ant1 1130 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐻 ∈ (𝐷 Func 𝐸))
1443ad2ant1 1130 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐾 ∈ (𝐸 Func 𝐹))
15 relfunc 17124 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
16 1st2ndbr 7723 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1715, 8, 16sylancr 590 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
18173ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
197, 2, 18funcf1 17128 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
20 simp2 1134 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2119, 20ffvelrnd 6829 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
22 simp3 1135 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
2319, 22ffvelrnd 6829 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
242, 13, 14, 21, 23cofu2nd 17147 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))))
2524coeq1d 5696 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)))
2683ad2ant1 1130 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐷))
277, 26, 13, 20cofu1 17146 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑥) = ((1st𝐻)‘((1st𝐺)‘𝑥)))
287, 26, 13, 22cofu1 17146 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑦) = ((1st𝐻)‘((1st𝐺)‘𝑦)))
2927, 28oveq12d 7153 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) = (((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))))
307, 26, 13, 20, 22cofu2nd 17147 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(𝐻func 𝐺))𝑦) = ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
3129, 30coeq12d 5699 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))))
3212, 25, 313eqtr4a 2859 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))
3332mpoeq3dva 7210 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦))))
3411, 33opeq12d 4773 . 2 (𝜑 → ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩ = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
353, 4cofucl 17150 . . 3 (𝜑 → (𝐾func 𝐻) ∈ (𝐷 Func 𝐹))
367, 8, 35cofuval 17144 . 2 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩)
378, 3cofucl 17150 . . 3 (𝜑 → (𝐻func 𝐺) ∈ (𝐶 Func 𝐸))
387, 37, 4cofuval 17144 . 2 (𝜑 → (𝐾func (𝐻func 𝐺)) = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
3934, 36, 383eqtr4d 2843 1 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cop 4531   class class class wbr 5030  ccom 5523  Rel wrel 5524  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Basecbs 16475   Func cfunc 17116  func ccofu 17118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-ixp 8445  df-cat 16931  df-cid 16932  df-func 17120  df-cofu 17122
This theorem is referenced by:  catccatid  17354
  Copyright terms: Public domain W3C validator