![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coiniss | Structured version Visualization version GIF version |
Description: Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
cofss.1 | âĒ (ð â ðī â No ) |
cofss.2 | âĒ (ð â ðĩ â ðī) |
Ref | Expression |
---|---|
coiniss | âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofss.2 | . . . . 5 âĒ (ð â ðĩ â ðī) | |
2 | 1 | sselda 3982 | . . . 4 âĒ ((ð â§ ð§ â ðĩ) â ð§ â ðī) |
3 | cofss.1 | . . . . . . 7 âĒ (ð â ðī â No ) | |
4 | 1, 3 | sstrd 3992 | . . . . . 6 âĒ (ð â ðĩ â No ) |
5 | 4 | sselda 3982 | . . . . 5 âĒ ((ð â§ ð§ â ðĩ) â ð§ â No ) |
6 | slerflex 27716 | . . . . 5 âĒ (ð§ â No â ð§ âĪs ð§) | |
7 | 5, 6 | syl 17 | . . . 4 âĒ ((ð â§ ð§ â ðĩ) â ð§ âĪs ð§) |
8 | breq1 5155 | . . . . 5 âĒ (ðĶ = ð§ â (ðĶ âĪs ð§ â ð§ âĪs ð§)) | |
9 | 8 | rspcev 3611 | . . . 4 âĒ ((ð§ â ðī â§ ð§ âĪs ð§) â âðĶ â ðī ðĶ âĪs ð§) |
10 | 2, 7, 9 | syl2anc 582 | . . 3 âĒ ((ð â§ ð§ â ðĩ) â âðĶ â ðī ðĶ âĪs ð§) |
11 | 10 | ralrimiva 3143 | . 2 âĒ (ð â âð§ â ðĩ âðĶ â ðī ðĶ âĪs ð§) |
12 | breq2 5156 | . . . 4 âĒ (ðĨ = ð§ â (ðĶ âĪs ðĨ â ðĶ âĪs ð§)) | |
13 | 12 | rexbidv 3176 | . . 3 âĒ (ðĨ = ð§ â (âðĶ â ðī ðĶ âĪs ðĨ â âðĶ â ðī ðĶ âĪs ð§)) |
14 | 13 | cbvralvw 3232 | . 2 âĒ (âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ â âð§ â ðĩ âðĶ â ðī ðĶ âĪs ð§) |
15 | 11, 14 | sylibr 233 | 1 âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 394 â wcel 2098 âwral 3058 âwrex 3067 â wss 3949 class class class wbr 5152 No csur 27593 âĪs csle 27697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-1o 8493 df-2o 8494 df-no 27596 df-slt 27597 df-sle 27698 |
This theorem is referenced by: cutlt 27872 |
Copyright terms: Public domain | W3C validator |