![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coiniss | Structured version Visualization version GIF version |
Description: Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
cofss.1 | âĒ (ð â ðī â No ) |
cofss.2 | âĒ (ð â ðĩ â ðī) |
Ref | Expression |
---|---|
coiniss | âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofss.2 | . . . . 5 âĒ (ð â ðĩ â ðī) | |
2 | 1 | sselda 3981 | . . . 4 âĒ ((ð ⧠ð§ â ðĩ) â ð§ â ðī) |
3 | cofss.1 | . . . . . . 7 âĒ (ð â ðī â No ) | |
4 | 1, 3 | sstrd 3991 | . . . . . 6 âĒ (ð â ðĩ â No ) |
5 | 4 | sselda 3981 | . . . . 5 âĒ ((ð ⧠ð§ â ðĩ) â ð§ â No ) |
6 | slerflex 27255 | . . . . 5 âĒ (ð§ â No â ð§ âĪs ð§) | |
7 | 5, 6 | syl 17 | . . . 4 âĒ ((ð ⧠ð§ â ðĩ) â ð§ âĪs ð§) |
8 | breq1 5150 | . . . . 5 âĒ (ðĶ = ð§ â (ðĶ âĪs ð§ â ð§ âĪs ð§)) | |
9 | 8 | rspcev 3612 | . . . 4 âĒ ((ð§ â ðī ⧠ð§ âĪs ð§) â âðĶ â ðī ðĶ âĪs ð§) |
10 | 2, 7, 9 | syl2anc 584 | . . 3 âĒ ((ð ⧠ð§ â ðĩ) â âðĶ â ðī ðĶ âĪs ð§) |
11 | 10 | ralrimiva 3146 | . 2 âĒ (ð â âð§ â ðĩ âðĶ â ðī ðĶ âĪs ð§) |
12 | breq2 5151 | . . . 4 âĒ (ðĨ = ð§ â (ðĶ âĪs ðĨ â ðĶ âĪs ð§)) | |
13 | 12 | rexbidv 3178 | . . 3 âĒ (ðĨ = ð§ â (âðĶ â ðī ðĶ âĪs ðĨ â âðĶ â ðī ðĶ âĪs ð§)) |
14 | 13 | cbvralvw 3234 | . 2 âĒ (âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ â âð§ â ðĩ âðĶ â ðī ðĶ âĪs ð§) |
15 | 11, 14 | sylibr 233 | 1 âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 396 â wcel 2106 âwral 3061 âwrex 3070 â wss 3947 class class class wbr 5147 No csur 27132 âĪs csle 27236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-sle 27237 |
This theorem is referenced by: cutlt 27408 |
Copyright terms: Public domain | W3C validator |