| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofss | Structured version Visualization version GIF version | ||
| Description: Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| cofss.1 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| cofss.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| cofss | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofss.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | 1 | sselda 3963 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐴) |
| 3 | cofss.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 4 | 1, 3 | sstrd 3974 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ No ) |
| 5 | 4 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ No ) |
| 6 | slerflex 27745 | . . . . 5 ⊢ (𝑧 ∈ No → 𝑧 ≤s 𝑧) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ≤s 𝑧) |
| 8 | breq2 5127 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑧 ≤s 𝑦 ↔ 𝑧 ≤s 𝑧)) | |
| 9 | 8 | rspcev 3605 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑧 ≤s 𝑧) → ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 10 | 2, 7, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 11 | 10 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 12 | breq1 5126 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ≤s 𝑦 ↔ 𝑧 ≤s 𝑦)) | |
| 13 | 12 | rexbidv 3166 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦)) |
| 14 | 13 | cbvralvw 3223 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 15 | 11, 14 | sylibr 234 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 class class class wbr 5123 No csur 27621 ≤s csle 27726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-1o 8488 df-2o 8489 df-no 27624 df-slt 27625 df-sle 27727 |
| This theorem is referenced by: cutlt 27903 |
| Copyright terms: Public domain | W3C validator |