MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofss Structured version   Visualization version   GIF version

Theorem cofss 27901
Description: Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
cofss.1 (𝜑𝐴 No )
cofss.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
cofss (𝜑 → ∀𝑥𝐵𝑦𝐴 𝑥 ≤s 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cofss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cofss.2 . . . . 5 (𝜑𝐵𝐴)
21sselda 3963 . . . 4 ((𝜑𝑧𝐵) → 𝑧𝐴)
3 cofss.1 . . . . . . 7 (𝜑𝐴 No )
41, 3sstrd 3974 . . . . . 6 (𝜑𝐵 No )
54sselda 3963 . . . . 5 ((𝜑𝑧𝐵) → 𝑧 No )
6 slerflex 27745 . . . . 5 (𝑧 No 𝑧 ≤s 𝑧)
75, 6syl 17 . . . 4 ((𝜑𝑧𝐵) → 𝑧 ≤s 𝑧)
8 breq2 5127 . . . . 5 (𝑦 = 𝑧 → (𝑧 ≤s 𝑦𝑧 ≤s 𝑧))
98rspcev 3605 . . . 4 ((𝑧𝐴𝑧 ≤s 𝑧) → ∃𝑦𝐴 𝑧 ≤s 𝑦)
102, 7, 9syl2anc 584 . . 3 ((𝜑𝑧𝐵) → ∃𝑦𝐴 𝑧 ≤s 𝑦)
1110ralrimiva 3133 . 2 (𝜑 → ∀𝑧𝐵𝑦𝐴 𝑧 ≤s 𝑦)
12 breq1 5126 . . . 4 (𝑥 = 𝑧 → (𝑥 ≤s 𝑦𝑧 ≤s 𝑦))
1312rexbidv 3166 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥 ≤s 𝑦 ↔ ∃𝑦𝐴 𝑧 ≤s 𝑦))
1413cbvralvw 3223 . 2 (∀𝑥𝐵𝑦𝐴 𝑥 ≤s 𝑦 ↔ ∀𝑧𝐵𝑦𝐴 𝑧 ≤s 𝑦)
1511, 14sylibr 234 1 (𝜑 → ∀𝑥𝐵𝑦𝐴 𝑥 ≤s 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123   No csur 27621   ≤s csle 27726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-1o 8488  df-2o 8489  df-no 27624  df-slt 27625  df-sle 27727
This theorem is referenced by:  cutlt  27903
  Copyright terms: Public domain W3C validator