| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofss | Structured version Visualization version GIF version | ||
| Description: Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| cofss.1 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| cofss.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| cofss | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofss.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | 1 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐴) |
| 3 | cofss.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 4 | 1, 3 | sstrd 3940 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ No ) |
| 5 | 4 | sselda 3929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ No ) |
| 6 | slerflex 27702 | . . . . 5 ⊢ (𝑧 ∈ No → 𝑧 ≤s 𝑧) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ≤s 𝑧) |
| 8 | breq2 5093 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑧 ≤s 𝑦 ↔ 𝑧 ≤s 𝑧)) | |
| 9 | 8 | rspcev 3572 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑧 ≤s 𝑧) → ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 10 | 2, 7, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 11 | 10 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 12 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ≤s 𝑦 ↔ 𝑧 ≤s 𝑦)) | |
| 13 | 12 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦)) |
| 14 | 13 | cbvralvw 3210 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑧 ≤s 𝑦) |
| 15 | 11, 14 | sylibr 234 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5089 No csur 27578 ≤s csle 27683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-sle 27684 |
| This theorem is referenced by: cutlt 27876 |
| Copyright terms: Public domain | W3C validator |