Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Visualization version   GIF version

Theorem cvmlift3lem5 33917
Description: Lemma for cvmlift2 33910. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem5 (𝜑 → (𝐹𝐻) = 𝐺)
Distinct variable groups:   𝑧,𝑓,𝑔,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem5
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (𝐻𝑦) = (𝐻𝑦)
2 cvmlift3.b . . . . . 6 𝐵 = 𝐶
3 cvmlift3.y . . . . . 6 𝑌 = 𝐾
4 cvmlift3.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . . 6 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . . 6 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . . 6 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . . 6 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 33916 . . . . 5 ((𝜑𝑦𝑌) → ((𝐻𝑦) = (𝐻𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦))))
131, 12mpbii 232 . . . 4 ((𝜑𝑦𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
14 df-3an 1089 . . . . . 6 (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) ↔ (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
15 eqid 2736 . . . . . . . . . . . 12 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
164ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓 ∈ (II Cn 𝐾))
188ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 22617 . . . . . . . . . . . . 13 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺𝑓) ∈ (II Cn 𝐽))
219ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑃𝐵)
22 simprl 769 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘0) = 𝑂)
2322fveq2d 6846 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 24244 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2524, 3cnf 22597 . . . . . . . . . . . . . . 15 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 13386 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
28 fvco3 6940 . . . . . . . . . . . . . 14 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
3010ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2787 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
322, 15, 16, 20, 21, 31cvmliftiota 33895 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp2d 1143 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓))
3433fveq1d 6844 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = ((𝐺𝑓)‘1))
3532simp1d 1142 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3624, 2cnf 22597 . . . . . . . . . . 11 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
38 1elunit 13387 . . . . . . . . . 10 1 ∈ (0[,]1)
39 fvco3 6940 . . . . . . . . . 10 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
4037, 38, 39sylancl 586 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
41 fvco3 6940 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶𝑌 ∧ 1 ∈ (0[,]1)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
4226, 38, 41sylancl 586 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
43 simprr 771 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘1) = 𝑦)
4443fveq2d 6846 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘1)) = (𝐺𝑦))
4542, 44eqtrd 2776 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺𝑦))
4634, 40, 453eqtr3d 2784 . . . . . . . 8 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦))
47 fveqeq2 6851 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → ((𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦) ↔ (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4846, 47syl5ibcom 244 . . . . . . 7 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4948expimpd 454 . . . . . 6 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5014, 49biimtrid 241 . . . . 5 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5150rexlimdva 3152 . . . 4 ((𝜑𝑦𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5213, 51mpd 15 . . 3 ((𝜑𝑦𝑌) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦))
5352mpteq2dva 5205 . 2 (𝜑 → (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))) = (𝑦𝑌 ↦ (𝐺𝑦)))
542, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 33915 . . . 4 (𝜑𝐻:𝑌𝐵)
5554ffvelcdmda 7035 . . 3 ((𝜑𝑦𝑌) → (𝐻𝑦) ∈ 𝐵)
5654feqmptd 6910 . . 3 (𝜑𝐻 = (𝑦𝑌 ↦ (𝐻𝑦)))
57 cvmcn 33856 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
58 eqid 2736 . . . . . 6 𝐽 = 𝐽
592, 58cnf 22597 . . . . 5 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
604, 57, 593syl 18 . . . 4 (𝜑𝐹:𝐵 𝐽)
6160feqmptd 6910 . . 3 (𝜑𝐹 = (𝑤𝐵 ↦ (𝐹𝑤)))
62 fveq2 6842 . . 3 (𝑤 = (𝐻𝑦) → (𝐹𝑤) = (𝐹‘(𝐻𝑦)))
6355, 56, 61, 62fmptco 7075 . 2 (𝜑 → (𝐹𝐻) = (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))))
643, 58cnf 22597 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
658, 64syl 17 . . 3 (𝜑𝐺:𝑌 𝐽)
6665feqmptd 6910 . 2 (𝜑𝐺 = (𝑦𝑌 ↦ (𝐺𝑦)))
6753, 63, 663eqtr4d 2786 1 (𝜑 → (𝐹𝐻) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   cuni 4865  cmpt 5188  ccom 5637  wf 6492  cfv 6496  crio 7312  (class class class)co 7357  0cc0 11051  1c1 11052  [,]cicc 13267   Cn ccn 22575  𝑛-Locally cnlly 22816  IIcii 24238  PConncpconn 33813  SConncsconn 33814   CovMap ccvm 33849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-cmp 22738  df-conn 22763  df-lly 22817  df-nlly 22818  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-ii 24240  df-htpy 24333  df-phtpy 24334  df-phtpc 24355  df-pco 24368  df-pconn 33815  df-sconn 33816  df-cvm 33850
This theorem is referenced by:  cvmlift3lem6  33918  cvmlift3lem7  33919  cvmlift3lem9  33921
  Copyright terms: Public domain W3C validator