Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Visualization version   GIF version

Theorem cvmlift3lem5 35307
Description: Lemma for cvmlift2 35300. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem5 (𝜑 → (𝐹𝐻) = 𝐺)
Distinct variable groups:   𝑧,𝑓,𝑔,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem5
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (𝐻𝑦) = (𝐻𝑦)
2 cvmlift3.b . . . . . 6 𝐵 = 𝐶
3 cvmlift3.y . . . . . 6 𝑌 = 𝐾
4 cvmlift3.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . . 6 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . . 6 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . . 6 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . . 6 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 35306 . . . . 5 ((𝜑𝑦𝑌) → ((𝐻𝑦) = (𝐻𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦))))
131, 12mpbii 233 . . . 4 ((𝜑𝑦𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
14 df-3an 1088 . . . . . 6 (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) ↔ (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
15 eqid 2734 . . . . . . . . . . . 12 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
164ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓 ∈ (II Cn 𝐾))
188ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 23289 . . . . . . . . . . . . 13 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺𝑓) ∈ (II Cn 𝐽))
219ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑃𝐵)
22 simprl 771 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘0) = 𝑂)
2322fveq2d 6910 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 24920 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2524, 3cnf 23269 . . . . . . . . . . . . . . 15 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 13505 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
28 fvco3 7007 . . . . . . . . . . . . . 14 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
3010ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2785 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
322, 15, 16, 20, 21, 31cvmliftiota 35285 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp2d 1142 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓))
3433fveq1d 6908 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = ((𝐺𝑓)‘1))
3532simp1d 1141 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3624, 2cnf 23269 . . . . . . . . . . 11 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
38 1elunit 13506 . . . . . . . . . 10 1 ∈ (0[,]1)
39 fvco3 7007 . . . . . . . . . 10 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
4037, 38, 39sylancl 586 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
41 fvco3 7007 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶𝑌 ∧ 1 ∈ (0[,]1)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
4226, 38, 41sylancl 586 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
43 simprr 773 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘1) = 𝑦)
4443fveq2d 6910 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘1)) = (𝐺𝑦))
4542, 44eqtrd 2774 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺𝑦))
4634, 40, 453eqtr3d 2782 . . . . . . . 8 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦))
47 fveqeq2 6915 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → ((𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦) ↔ (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4846, 47syl5ibcom 245 . . . . . . 7 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4948expimpd 453 . . . . . 6 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5014, 49biimtrid 242 . . . . 5 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5150rexlimdva 3152 . . . 4 ((𝜑𝑦𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5213, 51mpd 15 . . 3 ((𝜑𝑦𝑌) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦))
5352mpteq2dva 5247 . 2 (𝜑 → (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))) = (𝑦𝑌 ↦ (𝐺𝑦)))
542, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 35305 . . . 4 (𝜑𝐻:𝑌𝐵)
5554ffvelcdmda 7103 . . 3 ((𝜑𝑦𝑌) → (𝐻𝑦) ∈ 𝐵)
5654feqmptd 6976 . . 3 (𝜑𝐻 = (𝑦𝑌 ↦ (𝐻𝑦)))
57 cvmcn 35246 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
58 eqid 2734 . . . . . 6 𝐽 = 𝐽
592, 58cnf 23269 . . . . 5 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
604, 57, 593syl 18 . . . 4 (𝜑𝐹:𝐵 𝐽)
6160feqmptd 6976 . . 3 (𝜑𝐹 = (𝑤𝐵 ↦ (𝐹𝑤)))
62 fveq2 6906 . . 3 (𝑤 = (𝐻𝑦) → (𝐹𝑤) = (𝐹‘(𝐻𝑦)))
6355, 56, 61, 62fmptco 7148 . 2 (𝜑 → (𝐹𝐻) = (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))))
643, 58cnf 23269 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
658, 64syl 17 . . 3 (𝜑𝐺:𝑌 𝐽)
6665feqmptd 6976 . 2 (𝜑𝐺 = (𝑦𝑌 ↦ (𝐺𝑦)))
6753, 63, 663eqtr4d 2784 1 (𝜑 → (𝐹𝐻) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067   cuni 4911  cmpt 5230  ccom 5692  wf 6558  cfv 6562  crio 7386  (class class class)co 7430  0cc0 11152  1c1 11153  [,]cicc 13386   Cn ccn 23247  𝑛-Locally cnlly 23488  IIcii 24914  PConncpconn 35203  SConncsconn 35204   CovMap ccvm 35239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-cmp 23410  df-conn 23435  df-lly 23489  df-nlly 23490  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-ii 24916  df-cncf 24917  df-htpy 25015  df-phtpy 25016  df-phtpc 25037  df-pco 25051  df-pconn 35205  df-sconn 35206  df-cvm 35240
This theorem is referenced by:  cvmlift3lem6  35308  cvmlift3lem7  35309  cvmlift3lem9  35311
  Copyright terms: Public domain W3C validator