Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Visualization version   GIF version

Theorem cvmlift3lem5 33185
Description: Lemma for cvmlift2 33178. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem5 (𝜑 → (𝐹𝐻) = 𝐺)
Distinct variable groups:   𝑧,𝑓,𝑔,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem5
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (𝐻𝑦) = (𝐻𝑦)
2 cvmlift3.b . . . . . 6 𝐵 = 𝐶
3 cvmlift3.y . . . . . 6 𝑌 = 𝐾
4 cvmlift3.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . . 6 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . . 6 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . . 6 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . . 6 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 33184 . . . . 5 ((𝜑𝑦𝑌) → ((𝐻𝑦) = (𝐻𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦))))
131, 12mpbii 232 . . . 4 ((𝜑𝑦𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
14 df-3an 1087 . . . . . 6 (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) ↔ (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
15 eqid 2738 . . . . . . . . . . . 12 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
164ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simplr 765 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓 ∈ (II Cn 𝐾))
188ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 22325 . . . . . . . . . . . . 13 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺𝑓) ∈ (II Cn 𝐽))
219ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑃𝐵)
22 simprl 767 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘0) = 𝑂)
2322fveq2d 6760 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 23950 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2524, 3cnf 22305 . . . . . . . . . . . . . . 15 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 13130 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
28 fvco3 6849 . . . . . . . . . . . . . 14 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 585 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
3010ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2789 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
322, 15, 16, 20, 21, 31cvmliftiota 33163 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp2d 1141 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓))
3433fveq1d 6758 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = ((𝐺𝑓)‘1))
3532simp1d 1140 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3624, 2cnf 22305 . . . . . . . . . . 11 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
38 1elunit 13131 . . . . . . . . . 10 1 ∈ (0[,]1)
39 fvco3 6849 . . . . . . . . . 10 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
4037, 38, 39sylancl 585 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
41 fvco3 6849 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶𝑌 ∧ 1 ∈ (0[,]1)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
4226, 38, 41sylancl 585 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
43 simprr 769 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘1) = 𝑦)
4443fveq2d 6760 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘1)) = (𝐺𝑦))
4542, 44eqtrd 2778 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺𝑦))
4634, 40, 453eqtr3d 2786 . . . . . . . 8 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦))
47 fveqeq2 6765 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → ((𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦) ↔ (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4846, 47syl5ibcom 244 . . . . . . 7 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4948expimpd 453 . . . . . 6 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5014, 49syl5bi 241 . . . . 5 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5150rexlimdva 3212 . . . 4 ((𝜑𝑦𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5213, 51mpd 15 . . 3 ((𝜑𝑦𝑌) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦))
5352mpteq2dva 5170 . 2 (𝜑 → (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))) = (𝑦𝑌 ↦ (𝐺𝑦)))
542, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 33183 . . . 4 (𝜑𝐻:𝑌𝐵)
5554ffvelrnda 6943 . . 3 ((𝜑𝑦𝑌) → (𝐻𝑦) ∈ 𝐵)
5654feqmptd 6819 . . 3 (𝜑𝐻 = (𝑦𝑌 ↦ (𝐻𝑦)))
57 cvmcn 33124 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
58 eqid 2738 . . . . . 6 𝐽 = 𝐽
592, 58cnf 22305 . . . . 5 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
604, 57, 593syl 18 . . . 4 (𝜑𝐹:𝐵 𝐽)
6160feqmptd 6819 . . 3 (𝜑𝐹 = (𝑤𝐵 ↦ (𝐹𝑤)))
62 fveq2 6756 . . 3 (𝑤 = (𝐻𝑦) → (𝐹𝑤) = (𝐹‘(𝐻𝑦)))
6355, 56, 61, 62fmptco 6983 . 2 (𝜑 → (𝐹𝐻) = (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))))
643, 58cnf 22305 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
658, 64syl 17 . . 3 (𝜑𝐺:𝑌 𝐽)
6665feqmptd 6819 . 2 (𝜑𝐺 = (𝑦𝑌 ↦ (𝐺𝑦)))
6753, 63, 663eqtr4d 2788 1 (𝜑 → (𝐹𝐻) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   cuni 4836  cmpt 5153  ccom 5584  wf 6414  cfv 6418  crio 7211  (class class class)co 7255  0cc0 10802  1c1 10803  [,]cicc 13011   Cn ccn 22283  𝑛-Locally cnlly 22524  IIcii 23944  PConncpconn 33081  SConncsconn 33082   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-cmp 22446  df-conn 22471  df-lly 22525  df-nlly 22526  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pco 24074  df-pconn 33083  df-sconn 33084  df-cvm 33118
This theorem is referenced by:  cvmlift3lem6  33186  cvmlift3lem7  33187  cvmlift3lem9  33189
  Copyright terms: Public domain W3C validator