| Step | Hyp | Ref
| Expression |
| 1 | | cvmlift2.b |
. . . . . . . . 9
⊢ 𝐵 = ∪
𝐶 |
| 2 | | cvmlift2.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 3 | | cvmlift2.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
| 4 | | cvmlift2.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 5 | | cvmlift2.i |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
| 6 | | cvmlift2.h |
. . . . . . . . 9
⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
| 7 | | eqid 2736 |
. . . . . . . . 9
⊢
(℩𝑓
∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | cvmlift2lem3 35332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘0) = (𝐻‘𝑥))) |
| 9 | 8 | adantrr 717 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) →
((℩𝑓 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘0) = (𝐻‘𝑥))) |
| 10 | 9 | simp2d 1143 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))) |
| 11 | 10 | fveq1d 6883 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → ((𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))))‘𝑦) = ((𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))‘𝑦)) |
| 12 | 9 | simp1d 1142 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) ∈ (II Cn 𝐶)) |
| 13 | | iiuni 24830 |
. . . . . . . 8
⊢ (0[,]1) =
∪ II |
| 14 | 13, 1 | cnf 23189 |
. . . . . . 7
⊢
((℩𝑓
∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) ∈ (II Cn 𝐶) → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))):(0[,]1)⟶𝐵) |
| 15 | 12, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))):(0[,]1)⟶𝐵) |
| 16 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1)) |
| 17 | | fvco3 6983 |
. . . . . 6
⊢
(((℩𝑓
∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))):(0[,]1)⟶𝐵 ∧ 𝑦 ∈ (0[,]1)) → ((𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))))‘𝑦) = (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦))) |
| 18 | 15, 16, 17 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → ((𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))))‘𝑦) = (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦))) |
| 19 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑥𝐺𝑧) = (𝑥𝐺𝑦)) |
| 20 | | eqid 2736 |
. . . . . . 7
⊢ (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) |
| 21 | | ovex 7443 |
. . . . . . 7
⊢ (𝑥𝐺𝑦) ∈ V |
| 22 | 19, 20, 21 | fvmpt 6991 |
. . . . . 6
⊢ (𝑦 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))‘𝑦) = (𝑥𝐺𝑦)) |
| 23 | 16, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → ((𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))‘𝑦) = (𝑥𝐺𝑦)) |
| 24 | 11, 18, 23 | 3eqtr3d 2779 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) = (𝑥𝐺𝑦)) |
| 25 | 24 | 3impb 1114 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) = (𝑥𝐺𝑦)) |
| 26 | 25 | mpoeq3dva 7489 |
. 2
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦))) |
| 27 | 15, 16 | ffvelcdmd 7080 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) →
((℩𝑓 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦) ∈ 𝐵) |
| 28 | | cvmlift2.k |
. . . 4
⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
| 29 | 28 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦))) |
| 30 | | cvmcn 35289 |
. . . . 5
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 31 | | eqid 2736 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 32 | 1, 31 | cnf 23189 |
. . . . 5
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
| 33 | 2, 30, 32 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶∪ 𝐽) |
| 34 | 33 | feqmptd 6952 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐵 ↦ (𝐹‘𝑤))) |
| 35 | | fveq2 6881 |
. . 3
⊢ (𝑤 = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦) → (𝐹‘𝑤) = (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦))) |
| 36 | 27, 29, 34, 35 | fmpoco 8099 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐾) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)))) |
| 37 | | iitop 24829 |
. . . . . 6
⊢ II ∈
Top |
| 38 | 37, 37, 13, 13 | txunii 23536 |
. . . . 5
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
| 39 | 38, 31 | cnf 23189 |
. . . 4
⊢ (𝐺 ∈ ((II ×t
II) Cn 𝐽) → 𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽) |
| 40 | | ffn 6711 |
. . . 4
⊢ (𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
| 41 | 3, 39, 40 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
| 42 | | fnov 7543 |
. . 3
⊢ (𝐺 Fn ((0[,]1) × (0[,]1))
↔ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦))) |
| 43 | 41, 42 | sylib 218 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦))) |
| 44 | 26, 36, 43 | 3eqtr4d 2781 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) |