Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difico Structured version   Visualization version   GIF version

Theorem difico 32535
Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
difico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵))

Proof of Theorem difico
StepHypRef Expression
1 icodisj 13477 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
2 undif4 4462 . . . 4 (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)))
31, 2syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)))
43adantr 480 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)))
5 difid 4366 . . . . 5 ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶)) = ∅
65uneq2i 4156 . . . 4 ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = ((𝐴[,)𝐵) ∪ ∅)
7 un0 4386 . . . 4 ((𝐴[,)𝐵) ∪ ∅) = (𝐴[,)𝐵)
86, 7eqtri 2755 . . 3 ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵)
98a1i 11 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵))
10 icoun 13476 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶))
1110difeq1d 4117 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)) = ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)))
124, 9, 113eqtr3rd 2776 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cdif 3941  cun 3942  cin 3943  c0 4318   class class class wbr 5142  (class class class)co 7414  *cxr 11269  cle 11271  [,)cico 13350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-pre-lttri 11204  ax-pre-lttrn 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-ico 13354
This theorem is referenced by:  sxbrsigalem2  33842
  Copyright terms: Public domain W3C validator