| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difico | Structured version Visualization version GIF version | ||
| Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
| Ref | Expression |
|---|---|
| difico | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icodisj 13376 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | |
| 2 | undif4 4414 | . . . 4 ⊢ (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
| 5 | difid 4323 | . . . . 5 ⊢ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶)) = ∅ | |
| 6 | 5 | uneq2i 4112 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = ((𝐴[,)𝐵) ∪ ∅) |
| 7 | un0 4341 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ∅) = (𝐴[,)𝐵) | |
| 8 | 6, 7 | eqtri 2754 | . . 3 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵) |
| 9 | 8 | a1i 11 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵)) |
| 10 | icoun 13375 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) | |
| 11 | 10 | difeq1d 4072 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)) = ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶))) |
| 12 | 4, 9, 11 | 3eqtr3rd 2775 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 class class class wbr 5089 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: sxbrsigalem2 34299 |
| Copyright terms: Public domain | W3C validator |