![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difico | Structured version Visualization version GIF version |
Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
Ref | Expression |
---|---|
difico | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icodisj 13453 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | |
2 | undif4 4467 | . . . 4 ⊢ (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
4 | 3 | adantr 482 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
5 | difid 4371 | . . . . 5 ⊢ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶)) = ∅ | |
6 | 5 | uneq2i 4161 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = ((𝐴[,)𝐵) ∪ ∅) |
7 | un0 4391 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ∅) = (𝐴[,)𝐵) | |
8 | 6, 7 | eqtri 2761 | . . 3 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵) |
9 | 8 | a1i 11 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵)) |
10 | icoun 13452 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) | |
11 | 10 | difeq1d 4122 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)) = ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶))) |
12 | 4, 9, 11 | 3eqtr3rd 2782 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 ∅c0 4323 class class class wbr 5149 (class class class)co 7409 ℝ*cxr 11247 ≤ cle 11249 [,)cico 13326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ico 13330 |
This theorem is referenced by: sxbrsigalem2 33285 |
Copyright terms: Public domain | W3C validator |