Step | Hyp | Ref
| Expression |
1 | | sylow1lem4.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
2 | | fveqeq2 6765 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝐵 → ((♯‘𝑠) = (𝑃↑𝑁) ↔ (♯‘𝐵) = (𝑃↑𝑁))) |
3 | | sylow1lem.s |
. . . . . . . . . . 11
⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} |
4 | 2, 3 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃↑𝑁))) |
5 | 1, 4 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃↑𝑁))) |
6 | 5 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐵) = (𝑃↑𝑁)) |
7 | | sylow1.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℙ) |
8 | | prmnn 16307 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
10 | | sylow1.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
11 | 9, 10 | nnexpcld 13888 |
. . . . . . . 8
⊢ (𝜑 → (𝑃↑𝑁) ∈ ℕ) |
12 | 6, 11 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
13 | 12 | nnne0d 11953 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
14 | | hasheq0 14006 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑆 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)) |
15 | 14 | necon3bid 2987 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑆 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅)) |
16 | 1, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅)) |
17 | 13, 16 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ ∅) |
18 | | n0 4277 |
. . . . 5
⊢ (𝐵 ≠ ∅ ↔
∃𝑎 𝑎 ∈ 𝐵) |
19 | 17, 18 | sylib 217 |
. . . 4
⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐵) |
20 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐵 ∈ 𝑆) |
21 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → 𝑎 ∈ 𝐵) |
22 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑎 → (𝑏 + 𝑧) = (𝑏 + 𝑎)) |
23 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) = (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) |
24 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ (𝑏 + 𝑎) ∈ V |
25 | 22, 23, 24 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝐵 → ((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎)) |
26 | 21, 25 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → ((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎)) |
27 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ (𝑏 + 𝑧) ∈ V |
28 | 27, 23 | fnmpti 6560 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵 |
29 | | fnfvelrn 6940 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵 ∧ 𝑎 ∈ 𝐵) → ((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
30 | 28, 21, 29 | sylancr 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → ((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
31 | 26, 30 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → (𝑏 + 𝑎) ∈ ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
32 | | sylow1lem4.h |
. . . . . . . . . . . 12
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐵) = 𝐵} |
33 | 32 | ssrab3 4011 |
. . . . . . . . . . 11
⊢ 𝐻 ⊆ 𝑋 |
34 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝐻) |
35 | 33, 34 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝑋) |
36 | 1 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → 𝐵 ∈ 𝑆) |
37 | | mptexg 7079 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑆 → (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) ∈ V) |
38 | | rnexg 7725 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) ∈ V → ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) ∈ V) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) ∈ V) |
40 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
41 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝐵) → 𝑥 = 𝑏) |
42 | 41 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝐵) → (𝑥 + 𝑧) = (𝑏 + 𝑧)) |
43 | 40, 42 | mpteq12dv 5161 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝐵) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
44 | 43 | rneqd 5836 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝐵) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
45 | | sylow1lem.m |
. . . . . . . . . . 11
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
46 | 44, 45 | ovmpoga 7405 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ∧ ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧)) ∈ V) → (𝑏 ⊕ 𝐵) = ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
47 | 35, 36, 39, 46 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → (𝑏 ⊕ 𝐵) = ran (𝑧 ∈ 𝐵 ↦ (𝑏 + 𝑧))) |
48 | 31, 47 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → (𝑏 + 𝑎) ∈ (𝑏 ⊕ 𝐵)) |
49 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → (𝑢 ⊕ 𝐵) = (𝑏 ⊕ 𝐵)) |
50 | 49 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → ((𝑢 ⊕ 𝐵) = 𝐵 ↔ (𝑏 ⊕ 𝐵) = 𝐵)) |
51 | 50, 32 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐻 ↔ (𝑏 ∈ 𝑋 ∧ (𝑏 ⊕ 𝐵) = 𝐵)) |
52 | 51 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐻 → (𝑏 ⊕ 𝐵) = 𝐵) |
53 | 52 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → (𝑏 ⊕ 𝐵) = 𝐵) |
54 | 48, 53 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐻) → (𝑏 + 𝑎) ∈ 𝐵) |
55 | 54 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑏 ∈ 𝐻 → (𝑏 + 𝑎) ∈ 𝐵)) |
56 | | sylow1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
57 | 56 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝐺 ∈ Grp) |
58 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝑏 ∈ 𝐻) |
59 | 33, 58 | sselid 3915 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝑏 ∈ 𝑋) |
60 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝑐 ∈ 𝐻) |
61 | 33, 60 | sselid 3915 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝑐 ∈ 𝑋) |
62 | 5 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑋) |
63 | 62 | elpwid 4541 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
64 | 63 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝑋) |
65 | 64 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → 𝑎 ∈ 𝑋) |
66 | | sylow1.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
67 | | sylow1lem.a |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
68 | 66, 67 | grprcan 18528 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)) |
69 | 57, 59, 61, 65, 68 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)) |
70 | 69 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))) |
71 | 55, 70 | dom2d 8736 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐵 ∈ 𝑆 → 𝐻 ≼ 𝐵)) |
72 | 20, 71 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐻 ≼ 𝐵) |
73 | 19, 72 | exlimddv 1939 |
. . 3
⊢ (𝜑 → 𝐻 ≼ 𝐵) |
74 | | sylow1.f |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
75 | | ssfi 8918 |
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋) → 𝐻 ∈ Fin) |
76 | 74, 33, 75 | sylancl 585 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ Fin) |
77 | 74, 63 | ssfid 8971 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Fin) |
78 | | hashdom 14022 |
. . . 4
⊢ ((𝐻 ∈ Fin ∧ 𝐵 ∈ Fin) →
((♯‘𝐻) ≤
(♯‘𝐵) ↔
𝐻 ≼ 𝐵)) |
79 | 76, 77, 78 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻 ≼ 𝐵)) |
80 | 73, 79 | mpbird 256 |
. 2
⊢ (𝜑 → (♯‘𝐻) ≤ (♯‘𝐵)) |
81 | 80, 6 | breqtrd 5096 |
1
⊢ (𝜑 → (♯‘𝐻) ≤ (𝑃↑𝑁)) |