MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem4 Structured version   Visualization version   GIF version

Theorem sylow1lem4 19620
Description: Lemma for sylow1 19622. The stabilizer subgroup of any element of 𝑆 is at most 𝑃𝑁 in size. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
Assertion
Ref Expression
sylow1lem4 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁,𝑠,𝑢,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑢,𝑔,𝑠)   𝑆(𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1lem4.b . . . . . . . . . 10 (𝜑𝐵𝑆)
2 fveqeq2 6914 . . . . . . . . . . 11 (𝑠 = 𝐵 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝐵) = (𝑃𝑁)))
3 sylow1lem.s . . . . . . . . . . 11 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
42, 3elrab2 3694 . . . . . . . . . 10 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
51, 4sylib 218 . . . . . . . . 9 (𝜑 → (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
65simprd 495 . . . . . . . 8 (𝜑 → (♯‘𝐵) = (𝑃𝑁))
7 sylow1.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
8 prmnn 16712 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
10 sylow1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
119, 10nnexpcld 14285 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ ℕ)
126, 11eqeltrd 2840 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1312nnne0d 12317 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
14 hasheq0 14403 . . . . . . . 8 (𝐵𝑆 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
1514necon3bid 2984 . . . . . . 7 (𝐵𝑆 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
161, 15syl 17 . . . . . 6 (𝜑 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
1713, 16mpbid 232 . . . . 5 (𝜑𝐵 ≠ ∅)
18 n0 4352 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
1917, 18sylib 218 . . . 4 (𝜑 → ∃𝑎 𝑎𝐵)
201adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐵𝑆)
21 simplr 768 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑎𝐵)
22 oveq2 7440 . . . . . . . . . . . 12 (𝑧 = 𝑎 → (𝑏 + 𝑧) = (𝑏 + 𝑎))
23 eqid 2736 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (𝑏 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧))
24 ovex 7465 . . . . . . . . . . . 12 (𝑏 + 𝑎) ∈ V
2522, 23, 24fvmpt 7015 . . . . . . . . . . 11 (𝑎𝐵 → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
2621, 25syl 17 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
27 ovex 7465 . . . . . . . . . . . 12 (𝑏 + 𝑧) ∈ V
2827, 23fnmpti 6710 . . . . . . . . . . 11 (𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵
29 fnfvelrn 7099 . . . . . . . . . . 11 (((𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵𝑎𝐵) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3028, 21, 29sylancr 587 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3126, 30eqeltrrd 2841 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
32 sylow1lem4.h . . . . . . . . . . . 12 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
3332ssrab3 4081 . . . . . . . . . . 11 𝐻𝑋
34 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝐻)
3533, 34sselid 3980 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝑋)
361ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝐵𝑆)
37 mptexg 7242 . . . . . . . . . . 11 (𝐵𝑆 → (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
38 rnexg 7925 . . . . . . . . . . 11 ((𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
3936, 37, 383syl 18 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
40 simpr 484 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑦 = 𝐵)
41 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑥 = 𝑏)
4241oveq1d 7447 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
4340, 42mpteq12dv 5232 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4443rneqd 5948 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = 𝐵) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
45 sylow1lem.m . . . . . . . . . . 11 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
4644, 45ovmpoga 7588 . . . . . . . . . 10 ((𝑏𝑋𝐵𝑆 ∧ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4735, 36, 39, 46syl3anc 1372 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4831, 47eleqtrrd 2843 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ (𝑏 𝐵))
49 oveq1 7439 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝑢 𝐵) = (𝑏 𝐵))
5049eqeq1d 2738 . . . . . . . . . . 11 (𝑢 = 𝑏 → ((𝑢 𝐵) = 𝐵 ↔ (𝑏 𝐵) = 𝐵))
5150, 32elrab2 3694 . . . . . . . . . 10 (𝑏𝐻 ↔ (𝑏𝑋 ∧ (𝑏 𝐵) = 𝐵))
5251simprbi 496 . . . . . . . . 9 (𝑏𝐻 → (𝑏 𝐵) = 𝐵)
5352adantl 481 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = 𝐵)
5448, 53eleqtrd 2842 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ 𝐵)
5554ex 412 . . . . . 6 ((𝜑𝑎𝐵) → (𝑏𝐻 → (𝑏 + 𝑎) ∈ 𝐵))
56 sylow1.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5756ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝐺 ∈ Grp)
58 simprl 770 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝐻)
5933, 58sselid 3980 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝑋)
60 simprr 772 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝐻)
6133, 60sselid 3980 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝑋)
625simpld 494 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 𝑋)
6362elpwid 4608 . . . . . . . . . 10 (𝜑𝐵𝑋)
6463sselda 3982 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝑋)
6564adantr 480 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑎𝑋)
66 sylow1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
67 sylow1lem.a . . . . . . . . 9 + = (+g𝐺)
6866, 67grprcan 18992 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑎𝑋)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
6957, 59, 61, 65, 68syl13anc 1373 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
7069ex 412 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏𝐻𝑐𝐻) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)))
7155, 70dom2d 9034 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑆𝐻𝐵))
7220, 71mpd 15 . . . 4 ((𝜑𝑎𝐵) → 𝐻𝐵)
7319, 72exlimddv 1934 . . 3 (𝜑𝐻𝐵)
74 sylow1.f . . . . 5 (𝜑𝑋 ∈ Fin)
75 ssfi 9214 . . . . 5 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
7674, 33, 75sylancl 586 . . . 4 (𝜑𝐻 ∈ Fin)
7774, 63ssfid 9302 . . . 4 (𝜑𝐵 ∈ Fin)
78 hashdom 14419 . . . 4 ((𝐻 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
7976, 77, 78syl2anc 584 . . 3 (𝜑 → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
8073, 79mpbird 257 . 2 (𝜑 → (♯‘𝐻) ≤ (♯‘𝐵))
8180, 6breqtrd 5168 1 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  c0 4332  𝒫 cpw 4599  {cpr 4627   class class class wbr 5142  {copab 5204  cmpt 5224  ran crn 5685   Fn wfn 6555  cfv 6560  (class class class)co 7432  cmpo 7434  cdom 8984  Fincfn 8986  0cc0 11156  cle 11297  cn 12267  0cn0 12528  cexp 14103  chash 14370  cdvds 16291  cprime 16709  Basecbs 17248  +gcplusg 17298  Grpcgrp 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-seq 14044  df-exp 14104  df-hash 14371  df-prm 16710  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955
This theorem is referenced by:  sylow1lem5  19621
  Copyright terms: Public domain W3C validator