MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem4 Structured version   Visualization version   GIF version

Theorem sylow1lem4 19513
Description: Lemma for sylow1 19515. The stabilizer subgroup of any element of 𝑆 is at most 𝑃𝑁 in size. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
Assertion
Ref Expression
sylow1lem4 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁,𝑠,𝑢,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑢,𝑔,𝑠)   𝑆(𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1lem4.b . . . . . . . . . 10 (𝜑𝐵𝑆)
2 fveqeq2 6831 . . . . . . . . . . 11 (𝑠 = 𝐵 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝐵) = (𝑃𝑁)))
3 sylow1lem.s . . . . . . . . . . 11 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
42, 3elrab2 3645 . . . . . . . . . 10 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
51, 4sylib 218 . . . . . . . . 9 (𝜑 → (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
65simprd 495 . . . . . . . 8 (𝜑 → (♯‘𝐵) = (𝑃𝑁))
7 sylow1.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
8 prmnn 16585 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
10 sylow1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
119, 10nnexpcld 14152 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ ℕ)
126, 11eqeltrd 2831 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1312nnne0d 12175 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
14 hasheq0 14270 . . . . . . . 8 (𝐵𝑆 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
1514necon3bid 2972 . . . . . . 7 (𝐵𝑆 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
161, 15syl 17 . . . . . 6 (𝜑 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
1713, 16mpbid 232 . . . . 5 (𝜑𝐵 ≠ ∅)
18 n0 4300 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
1917, 18sylib 218 . . . 4 (𝜑 → ∃𝑎 𝑎𝐵)
201adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐵𝑆)
21 simplr 768 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑎𝐵)
22 oveq2 7354 . . . . . . . . . . . 12 (𝑧 = 𝑎 → (𝑏 + 𝑧) = (𝑏 + 𝑎))
23 eqid 2731 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (𝑏 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧))
24 ovex 7379 . . . . . . . . . . . 12 (𝑏 + 𝑎) ∈ V
2522, 23, 24fvmpt 6929 . . . . . . . . . . 11 (𝑎𝐵 → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
2621, 25syl 17 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
27 ovex 7379 . . . . . . . . . . . 12 (𝑏 + 𝑧) ∈ V
2827, 23fnmpti 6624 . . . . . . . . . . 11 (𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵
29 fnfvelrn 7013 . . . . . . . . . . 11 (((𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵𝑎𝐵) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3028, 21, 29sylancr 587 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3126, 30eqeltrrd 2832 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
32 sylow1lem4.h . . . . . . . . . . . 12 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
3332ssrab3 4029 . . . . . . . . . . 11 𝐻𝑋
34 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝐻)
3533, 34sselid 3927 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝑋)
361ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝐵𝑆)
37 mptexg 7155 . . . . . . . . . . 11 (𝐵𝑆 → (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
38 rnexg 7832 . . . . . . . . . . 11 ((𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
3936, 37, 383syl 18 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
40 simpr 484 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑦 = 𝐵)
41 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑥 = 𝑏)
4241oveq1d 7361 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
4340, 42mpteq12dv 5176 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4443rneqd 5877 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = 𝐵) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
45 sylow1lem.m . . . . . . . . . . 11 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
4644, 45ovmpoga 7500 . . . . . . . . . 10 ((𝑏𝑋𝐵𝑆 ∧ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4735, 36, 39, 46syl3anc 1373 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4831, 47eleqtrrd 2834 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ (𝑏 𝐵))
49 oveq1 7353 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝑢 𝐵) = (𝑏 𝐵))
5049eqeq1d 2733 . . . . . . . . . . 11 (𝑢 = 𝑏 → ((𝑢 𝐵) = 𝐵 ↔ (𝑏 𝐵) = 𝐵))
5150, 32elrab2 3645 . . . . . . . . . 10 (𝑏𝐻 ↔ (𝑏𝑋 ∧ (𝑏 𝐵) = 𝐵))
5251simprbi 496 . . . . . . . . 9 (𝑏𝐻 → (𝑏 𝐵) = 𝐵)
5352adantl 481 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = 𝐵)
5448, 53eleqtrd 2833 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ 𝐵)
5554ex 412 . . . . . 6 ((𝜑𝑎𝐵) → (𝑏𝐻 → (𝑏 + 𝑎) ∈ 𝐵))
56 sylow1.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5756ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝐺 ∈ Grp)
58 simprl 770 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝐻)
5933, 58sselid 3927 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝑋)
60 simprr 772 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝐻)
6133, 60sselid 3927 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝑋)
625simpld 494 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 𝑋)
6362elpwid 4556 . . . . . . . . . 10 (𝜑𝐵𝑋)
6463sselda 3929 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝑋)
6564adantr 480 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑎𝑋)
66 sylow1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
67 sylow1lem.a . . . . . . . . 9 + = (+g𝐺)
6866, 67grprcan 18886 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑎𝑋)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
6957, 59, 61, 65, 68syl13anc 1374 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
7069ex 412 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏𝐻𝑐𝐻) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)))
7155, 70dom2d 8915 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑆𝐻𝐵))
7220, 71mpd 15 . . . 4 ((𝜑𝑎𝐵) → 𝐻𝐵)
7319, 72exlimddv 1936 . . 3 (𝜑𝐻𝐵)
74 sylow1.f . . . . 5 (𝜑𝑋 ∈ Fin)
75 ssfi 9082 . . . . 5 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
7674, 33, 75sylancl 586 . . . 4 (𝜑𝐻 ∈ Fin)
7774, 63ssfid 9153 . . . 4 (𝜑𝐵 ∈ Fin)
78 hashdom 14286 . . . 4 ((𝐻 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
7976, 77, 78syl2anc 584 . . 3 (𝜑 → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
8073, 79mpbird 257 . 2 (𝜑 → (♯‘𝐻) ≤ (♯‘𝐵))
8180, 6breqtrd 5115 1 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547  {cpr 4575   class class class wbr 5089  {copab 5151  cmpt 5170  ran crn 5615   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  cdom 8867  Fincfn 8869  0cc0 11006  cle 11147  cn 12125  0cn0 12381  cexp 13968  chash 14237  cdvds 16163  cprime 16582  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-exp 13969  df-hash 14238  df-prm 16583  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849
This theorem is referenced by:  sylow1lem5  19514
  Copyright terms: Public domain W3C validator