MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem4 Structured version   Visualization version   GIF version

Theorem sylow1lem4 19643
Description: Lemma for sylow1 19645. The stabilizer subgroup of any element of 𝑆 is at most 𝑃𝑁 in size. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
Assertion
Ref Expression
sylow1lem4 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁,𝑠,𝑢,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑢,𝑔,𝑠)   𝑆(𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1lem4.b . . . . . . . . . 10 (𝜑𝐵𝑆)
2 fveqeq2 6929 . . . . . . . . . . 11 (𝑠 = 𝐵 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝐵) = (𝑃𝑁)))
3 sylow1lem.s . . . . . . . . . . 11 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
42, 3elrab2 3711 . . . . . . . . . 10 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
51, 4sylib 218 . . . . . . . . 9 (𝜑 → (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
65simprd 495 . . . . . . . 8 (𝜑 → (♯‘𝐵) = (𝑃𝑁))
7 sylow1.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
8 prmnn 16721 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
10 sylow1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
119, 10nnexpcld 14294 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ ℕ)
126, 11eqeltrd 2844 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1312nnne0d 12343 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
14 hasheq0 14412 . . . . . . . 8 (𝐵𝑆 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
1514necon3bid 2991 . . . . . . 7 (𝐵𝑆 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
161, 15syl 17 . . . . . 6 (𝜑 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
1713, 16mpbid 232 . . . . 5 (𝜑𝐵 ≠ ∅)
18 n0 4376 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
1917, 18sylib 218 . . . 4 (𝜑 → ∃𝑎 𝑎𝐵)
201adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐵𝑆)
21 simplr 768 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑎𝐵)
22 oveq2 7456 . . . . . . . . . . . 12 (𝑧 = 𝑎 → (𝑏 + 𝑧) = (𝑏 + 𝑎))
23 eqid 2740 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (𝑏 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧))
24 ovex 7481 . . . . . . . . . . . 12 (𝑏 + 𝑎) ∈ V
2522, 23, 24fvmpt 7029 . . . . . . . . . . 11 (𝑎𝐵 → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
2621, 25syl 17 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
27 ovex 7481 . . . . . . . . . . . 12 (𝑏 + 𝑧) ∈ V
2827, 23fnmpti 6723 . . . . . . . . . . 11 (𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵
29 fnfvelrn 7114 . . . . . . . . . . 11 (((𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵𝑎𝐵) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3028, 21, 29sylancr 586 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3126, 30eqeltrrd 2845 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
32 sylow1lem4.h . . . . . . . . . . . 12 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
3332ssrab3 4105 . . . . . . . . . . 11 𝐻𝑋
34 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝐻)
3533, 34sselid 4006 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝑋)
361ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝐵𝑆)
37 mptexg 7258 . . . . . . . . . . 11 (𝐵𝑆 → (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
38 rnexg 7942 . . . . . . . . . . 11 ((𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
3936, 37, 383syl 18 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
40 simpr 484 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑦 = 𝐵)
41 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑥 = 𝑏)
4241oveq1d 7463 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
4340, 42mpteq12dv 5257 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4443rneqd 5963 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = 𝐵) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
45 sylow1lem.m . . . . . . . . . . 11 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
4644, 45ovmpoga 7604 . . . . . . . . . 10 ((𝑏𝑋𝐵𝑆 ∧ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4735, 36, 39, 46syl3anc 1371 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4831, 47eleqtrrd 2847 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ (𝑏 𝐵))
49 oveq1 7455 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝑢 𝐵) = (𝑏 𝐵))
5049eqeq1d 2742 . . . . . . . . . . 11 (𝑢 = 𝑏 → ((𝑢 𝐵) = 𝐵 ↔ (𝑏 𝐵) = 𝐵))
5150, 32elrab2 3711 . . . . . . . . . 10 (𝑏𝐻 ↔ (𝑏𝑋 ∧ (𝑏 𝐵) = 𝐵))
5251simprbi 496 . . . . . . . . 9 (𝑏𝐻 → (𝑏 𝐵) = 𝐵)
5352adantl 481 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = 𝐵)
5448, 53eleqtrd 2846 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ 𝐵)
5554ex 412 . . . . . 6 ((𝜑𝑎𝐵) → (𝑏𝐻 → (𝑏 + 𝑎) ∈ 𝐵))
56 sylow1.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5756ad2antrr 725 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝐺 ∈ Grp)
58 simprl 770 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝐻)
5933, 58sselid 4006 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝑋)
60 simprr 772 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝐻)
6133, 60sselid 4006 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝑋)
625simpld 494 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 𝑋)
6362elpwid 4631 . . . . . . . . . 10 (𝜑𝐵𝑋)
6463sselda 4008 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝑋)
6564adantr 480 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑎𝑋)
66 sylow1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
67 sylow1lem.a . . . . . . . . 9 + = (+g𝐺)
6866, 67grprcan 19013 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑎𝑋)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
6957, 59, 61, 65, 68syl13anc 1372 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
7069ex 412 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏𝐻𝑐𝐻) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)))
7155, 70dom2d 9053 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑆𝐻𝐵))
7220, 71mpd 15 . . . 4 ((𝜑𝑎𝐵) → 𝐻𝐵)
7319, 72exlimddv 1934 . . 3 (𝜑𝐻𝐵)
74 sylow1.f . . . . 5 (𝜑𝑋 ∈ Fin)
75 ssfi 9240 . . . . 5 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
7674, 33, 75sylancl 585 . . . 4 (𝜑𝐻 ∈ Fin)
7774, 63ssfid 9329 . . . 4 (𝜑𝐵 ∈ Fin)
78 hashdom 14428 . . . 4 ((𝐻 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
7976, 77, 78syl2anc 583 . . 3 (𝜑 → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
8073, 79mpbird 257 . 2 (𝜑 → (♯‘𝐻) ≤ (♯‘𝐵))
8180, 6breqtrd 5192 1 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622  {cpr 4650   class class class wbr 5166  {copab 5228  cmpt 5249  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  cdom 9001  Fincfn 9003  0cc0 11184  cle 11325  cn 12293  0cn0 12553  cexp 14112  chash 14379  cdvds 16302  cprime 16718  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380  df-prm 16719  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976
This theorem is referenced by:  sylow1lem5  19644
  Copyright terms: Public domain W3C validator