MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem4 Structured version   Visualization version   GIF version

Theorem sylow1lem4 19206
Description: Lemma for sylow1 19208. The stabilizer subgroup of any element of 𝑆 is at most 𝑃𝑁 in size. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
Assertion
Ref Expression
sylow1lem4 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁,𝑠,𝑢,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑢,𝑔,𝑠)   𝑆(𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1lem4.b . . . . . . . . . 10 (𝜑𝐵𝑆)
2 fveqeq2 6783 . . . . . . . . . . 11 (𝑠 = 𝐵 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝐵) = (𝑃𝑁)))
3 sylow1lem.s . . . . . . . . . . 11 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
42, 3elrab2 3627 . . . . . . . . . 10 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
51, 4sylib 217 . . . . . . . . 9 (𝜑 → (𝐵 ∈ 𝒫 𝑋 ∧ (♯‘𝐵) = (𝑃𝑁)))
65simprd 496 . . . . . . . 8 (𝜑 → (♯‘𝐵) = (𝑃𝑁))
7 sylow1.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
8 prmnn 16379 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
10 sylow1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
119, 10nnexpcld 13960 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ ℕ)
126, 11eqeltrd 2839 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1312nnne0d 12023 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
14 hasheq0 14078 . . . . . . . 8 (𝐵𝑆 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
1514necon3bid 2988 . . . . . . 7 (𝐵𝑆 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
161, 15syl 17 . . . . . 6 (𝜑 → ((♯‘𝐵) ≠ 0 ↔ 𝐵 ≠ ∅))
1713, 16mpbid 231 . . . . 5 (𝜑𝐵 ≠ ∅)
18 n0 4280 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
1917, 18sylib 217 . . . 4 (𝜑 → ∃𝑎 𝑎𝐵)
201adantr 481 . . . . 5 ((𝜑𝑎𝐵) → 𝐵𝑆)
21 simplr 766 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑎𝐵)
22 oveq2 7283 . . . . . . . . . . . 12 (𝑧 = 𝑎 → (𝑏 + 𝑧) = (𝑏 + 𝑎))
23 eqid 2738 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (𝑏 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧))
24 ovex 7308 . . . . . . . . . . . 12 (𝑏 + 𝑎) ∈ V
2522, 23, 24fvmpt 6875 . . . . . . . . . . 11 (𝑎𝐵 → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
2621, 25syl 17 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) = (𝑏 + 𝑎))
27 ovex 7308 . . . . . . . . . . . 12 (𝑏 + 𝑧) ∈ V
2827, 23fnmpti 6576 . . . . . . . . . . 11 (𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵
29 fnfvelrn 6958 . . . . . . . . . . 11 (((𝑧𝐵 ↦ (𝑏 + 𝑧)) Fn 𝐵𝑎𝐵) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3028, 21, 29sylancr 587 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ((𝑧𝐵 ↦ (𝑏 + 𝑧))‘𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
3126, 30eqeltrrd 2840 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
32 sylow1lem4.h . . . . . . . . . . . 12 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
3332ssrab3 4015 . . . . . . . . . . 11 𝐻𝑋
34 simpr 485 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝐻)
3533, 34sselid 3919 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝑏𝑋)
361ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → 𝐵𝑆)
37 mptexg 7097 . . . . . . . . . . 11 (𝐵𝑆 → (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
38 rnexg 7751 . . . . . . . . . . 11 ((𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
3936, 37, 383syl 18 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V)
40 simpr 485 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑦 = 𝐵)
41 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = 𝐵) → 𝑥 = 𝑏)
4241oveq1d 7290 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
4340, 42mpteq12dv 5165 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = 𝐵) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4443rneqd 5847 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = 𝐵) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
45 sylow1lem.m . . . . . . . . . . 11 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
4644, 45ovmpoga 7427 . . . . . . . . . 10 ((𝑏𝑋𝐵𝑆 ∧ ran (𝑧𝐵 ↦ (𝑏 + 𝑧)) ∈ V) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4735, 36, 39, 46syl3anc 1370 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = ran (𝑧𝐵 ↦ (𝑏 + 𝑧)))
4831, 47eleqtrrd 2842 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ (𝑏 𝐵))
49 oveq1 7282 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝑢 𝐵) = (𝑏 𝐵))
5049eqeq1d 2740 . . . . . . . . . . 11 (𝑢 = 𝑏 → ((𝑢 𝐵) = 𝐵 ↔ (𝑏 𝐵) = 𝐵))
5150, 32elrab2 3627 . . . . . . . . . 10 (𝑏𝐻 ↔ (𝑏𝑋 ∧ (𝑏 𝐵) = 𝐵))
5251simprbi 497 . . . . . . . . 9 (𝑏𝐻 → (𝑏 𝐵) = 𝐵)
5352adantl 482 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 𝐵) = 𝐵)
5448, 53eleqtrd 2841 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐻) → (𝑏 + 𝑎) ∈ 𝐵)
5554ex 413 . . . . . 6 ((𝜑𝑎𝐵) → (𝑏𝐻 → (𝑏 + 𝑎) ∈ 𝐵))
56 sylow1.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5756ad2antrr 723 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝐺 ∈ Grp)
58 simprl 768 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝐻)
5933, 58sselid 3919 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑏𝑋)
60 simprr 770 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝐻)
6133, 60sselid 3919 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑐𝑋)
625simpld 495 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 𝑋)
6362elpwid 4544 . . . . . . . . . 10 (𝜑𝐵𝑋)
6463sselda 3921 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝑋)
6564adantr 481 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → 𝑎𝑋)
66 sylow1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
67 sylow1lem.a . . . . . . . . 9 + = (+g𝐺)
6866, 67grprcan 18613 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑎𝑋)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
6957, 59, 61, 65, 68syl13anc 1371 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑏𝐻𝑐𝐻)) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐))
7069ex 413 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏𝐻𝑐𝐻) → ((𝑏 + 𝑎) = (𝑐 + 𝑎) ↔ 𝑏 = 𝑐)))
7155, 70dom2d 8781 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑆𝐻𝐵))
7220, 71mpd 15 . . . 4 ((𝜑𝑎𝐵) → 𝐻𝐵)
7319, 72exlimddv 1938 . . 3 (𝜑𝐻𝐵)
74 sylow1.f . . . . 5 (𝜑𝑋 ∈ Fin)
75 ssfi 8956 . . . . 5 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
7674, 33, 75sylancl 586 . . . 4 (𝜑𝐻 ∈ Fin)
7774, 63ssfid 9042 . . . 4 (𝜑𝐵 ∈ Fin)
78 hashdom 14094 . . . 4 ((𝐻 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
7976, 77, 78syl2anc 584 . . 3 (𝜑 → ((♯‘𝐻) ≤ (♯‘𝐵) ↔ 𝐻𝐵))
8073, 79mpbird 256 . 2 (𝜑 → (♯‘𝐻) ≤ (♯‘𝐵))
8180, 6breqtrd 5100 1 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  {cpr 4563   class class class wbr 5074  {copab 5136  cmpt 5157  ran crn 5590   Fn wfn 6428  cfv 6433  (class class class)co 7275  cmpo 7277  cdom 8731  Fincfn 8733  0cc0 10871  cle 11010  cn 11973  0cn0 12233  cexp 13782  chash 14044  cdvds 15963  cprime 16376  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-exp 13783  df-hash 14045  df-prm 16377  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580
This theorem is referenced by:  sylow1lem5  19207
  Copyright terms: Public domain W3C validator