MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcl Structured version   Visualization version   GIF version

Theorem dprdfcl 19135
Description: A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfcl ((𝜑𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dprdfcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 19132 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 234 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp2d 1139 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
8 fveq2 6670 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
9 fveq2 6670 . . . 4 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
108, 9eleq12d 2907 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝑆𝑥) ↔ (𝐹𝑋) ∈ (𝑆𝑋)))
1110rspccva 3622 . 2 ((∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
127, 11sylan 582 1 ((𝜑𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142   class class class wbr 5066  dom cdm 5555   Fn wfn 6350  cfv 6355  Xcixp 8461   finSupp cfsupp 8833   DProd cdprd 19115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-oprab 7160  df-mpo 7161  df-ixp 8462  df-dprd 19117
This theorem is referenced by:  dprdfcntz  19137  dprdfinv  19141  dprdfadd  19142  dprdfeq0  19144  dprdlub  19148  dmdprdsplitlem  19159  dpjidcl  19180
  Copyright terms: Public domain W3C validator