| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdfcl | Structured version Visualization version GIF version | ||
| Description: A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdff.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dprdfcl | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 2 | dprdff.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 3 | dprdff.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 4 | dprdff.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | 2, 3, 4 | dprdw 19928 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
| 6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 )) |
| 7 | 6 | simp2d 1143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 8 | fveq2 6830 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 9 | fveq2 6830 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) | |
| 10 | 8, 9 | eleq12d 2827 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ∈ (𝑆‘𝑥) ↔ (𝐹‘𝑋) ∈ (𝑆‘𝑋))) |
| 11 | 10 | rspccva 3572 | . 2 ⊢ ((∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) |
| 12 | 7, 11 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 class class class wbr 5095 dom cdm 5621 Fn wfn 6483 ‘cfv 6488 Xcixp 8829 finSupp cfsupp 9254 DProd cdprd 19911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-oprab 7358 df-mpo 7359 df-ixp 8830 df-dprd 19913 |
| This theorem is referenced by: dprdfcntz 19933 dprdfinv 19937 dprdfadd 19938 dprdfeq0 19940 dprdlub 19944 dmdprdsplitlem 19955 dpjidcl 19976 |
| Copyright terms: Public domain | W3C validator |