MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcl Structured version   Visualization version   GIF version

Theorem dprdfcl 19945
Description: A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfcl ((𝜑𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dprdfcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 19942 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 232 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp2d 1143 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
8 fveq2 6858 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
9 fveq2 6858 . . . 4 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
108, 9eleq12d 2822 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝑆𝑥) ↔ (𝐹𝑋) ∈ (𝑆𝑋)))
1110rspccva 3587 . 2 ((∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
127, 11sylan 580 1 ((𝜑𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  dom cdm 5638   Fn wfn 6506  cfv 6511  Xcixp 8870   finSupp cfsupp 9312   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-oprab 7391  df-mpo 7392  df-ixp 8871  df-dprd 19927
This theorem is referenced by:  dprdfcntz  19947  dprdfinv  19951  dprdfadd  19952  dprdfeq0  19954  dprdlub  19958  dmdprdsplitlem  19969  dpjidcl  19990
  Copyright terms: Public domain W3C validator