MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdff Structured version   Visualization version   GIF version

Theorem dprdff 18874
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdff.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdff (𝜑𝐹:𝐼𝐵)
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 18872 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 224 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp1d 1122 . 2 (𝜑𝐹 Fn 𝐼)
86simp2d 1123 . . 3 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
93, 4dprdf2 18869 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109ffvelrnda 6670 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
11 dprdff.b . . . . . . 7 𝐵 = (Base‘𝐺)
1211subgss 18054 . . . . . 6 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ 𝐵)
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ 𝐵)
1413sseld 3853 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) ∈ (𝑆𝑥) → (𝐹𝑥) ∈ 𝐵))
1514ralimdva 3121 . . 3 (𝜑 → (∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
168, 15mpd 15 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵)
17 ffnfv 6699 . 2 (𝐹:𝐼𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
187, 16, 17sylanbrc 575 1 (𝜑𝐹:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082  {crab 3086  wss 3825   class class class wbr 4923  dom cdm 5400   Fn wfn 6177  wf 6178  cfv 6182  Xcixp 8251   finSupp cfsupp 8620  Basecbs 16329  SubGrpcsubg 18047   DProd cdprd 18855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7494  df-2nd 7495  df-ixp 8252  df-subg 18050  df-dprd 18857
This theorem is referenced by:  dprdfcntz  18877  dprdssv  18878  dprdfid  18879  dprdfinv  18881  dprdfadd  18882  dprdfsub  18883  dprdfeq0  18884  dprdf11  18885  dprdlub  18888  dmdprdsplitlem  18899  dprddisj2  18901  dpjidcl  18920
  Copyright terms: Public domain W3C validator