MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdff Structured version   Visualization version   GIF version

Theorem dprdff 19921
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdff.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdff (𝜑𝐹:𝐼𝐵)
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 19919 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 232 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp1d 1142 . 2 (𝜑𝐹 Fn 𝐼)
86simp2d 1143 . . 3 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
93, 4dprdf2 19916 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109ffvelcdmda 7012 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
11 dprdff.b . . . . . . 7 𝐵 = (Base‘𝐺)
1211subgss 19035 . . . . . 6 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ 𝐵)
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ 𝐵)
1413sseld 3928 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) ∈ (𝑆𝑥) → (𝐹𝑥) ∈ 𝐵))
1514ralimdva 3144 . . 3 (𝜑 → (∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
168, 15mpd 15 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵)
17 ffnfv 7047 . 2 (𝐹:𝐼𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
187, 16, 17sylanbrc 583 1 (𝜑𝐹:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897   class class class wbr 5086  dom cdm 5611   Fn wfn 6471  wf 6472  cfv 6476  Xcixp 8816   finSupp cfsupp 9240  Basecbs 17115  SubGrpcsubg 19028   DProd cdprd 19902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-ixp 8817  df-subg 19031  df-dprd 19904
This theorem is referenced by:  dprdfcntz  19924  dprdssv  19925  dprdfid  19926  dprdfinv  19928  dprdfadd  19929  dprdfsub  19930  dprdfeq0  19931  dprdf11  19932  dprdlub  19935  dmdprdsplitlem  19946  dprddisj2  19948  dpjidcl  19967
  Copyright terms: Public domain W3C validator