![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdff | Structured version Visualization version GIF version |
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdff.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdff.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
dprdff | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdff.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
2 | dprdff.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
3 | dprdff.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 2, 3, 4 | dprdw 20054 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 )) |
7 | 6 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
8 | 6 | simp2d 1143 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
9 | 3, 4 | dprdf2 20051 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
10 | 9 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
11 | dprdff.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
12 | 11 | subgss 19167 | . . . . . 6 ⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → (𝑆‘𝑥) ⊆ 𝐵) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ 𝐵) |
14 | 13 | sseld 4007 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) ∈ (𝑆‘𝑥) → (𝐹‘𝑥) ∈ 𝐵)) |
15 | 14 | ralimdva 3173 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) |
16 | 8, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵) |
17 | ffnfv 7153 | . 2 ⊢ (𝐹:𝐼⟶𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) | |
18 | 7, 16, 17 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 Xcixp 8955 finSupp cfsupp 9431 Basecbs 17258 SubGrpcsubg 19160 DProd cdprd 20037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-ixp 8956 df-subg 19163 df-dprd 20039 |
This theorem is referenced by: dprdfcntz 20059 dprdssv 20060 dprdfid 20061 dprdfinv 20063 dprdfadd 20064 dprdfsub 20065 dprdfeq0 20066 dprdf11 20067 dprdlub 20070 dmdprdsplitlem 20081 dprddisj2 20083 dpjidcl 20102 |
Copyright terms: Public domain | W3C validator |