![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdff | Structured version Visualization version GIF version |
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdff.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdff.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
dprdff | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdff.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
2 | dprdff.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
3 | dprdff.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 2, 3, 4 | dprdw 19921 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 )) |
7 | 6 | simp1d 1140 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
8 | 6 | simp2d 1141 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
9 | 3, 4 | dprdf2 19918 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
10 | 9 | ffvelcdmda 7085 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
11 | dprdff.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
12 | 11 | subgss 19043 | . . . . . 6 ⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → (𝑆‘𝑥) ⊆ 𝐵) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ 𝐵) |
14 | 13 | sseld 3980 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) ∈ (𝑆‘𝑥) → (𝐹‘𝑥) ∈ 𝐵)) |
15 | 14 | ralimdva 3165 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) |
16 | 8, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵) |
17 | ffnfv 7119 | . 2 ⊢ (𝐹:𝐼⟶𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) | |
18 | 7, 16, 17 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {crab 3430 ⊆ wss 3947 class class class wbr 5147 dom cdm 5675 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 Xcixp 8893 finSupp cfsupp 9363 Basecbs 17148 SubGrpcsubg 19036 DProd cdprd 19904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-ixp 8894 df-subg 19039 df-dprd 19906 |
This theorem is referenced by: dprdfcntz 19926 dprdssv 19927 dprdfid 19928 dprdfinv 19930 dprdfadd 19931 dprdfsub 19932 dprdfeq0 19933 dprdf11 19934 dprdlub 19937 dmdprdsplitlem 19948 dprddisj2 19950 dpjidcl 19969 |
Copyright terms: Public domain | W3C validator |