| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdff | Structured version Visualization version GIF version | ||
| Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdff.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| dprdff.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dprdff | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 2 | dprdff.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 3 | dprdff.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 4 | dprdff.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | 2, 3, 4 | dprdw 19998 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
| 6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 )) |
| 7 | 6 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 8 | 6 | simp2d 1143 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 9 | 3, 4 | dprdf2 19995 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 10 | 9 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
| 11 | dprdff.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 12 | 11 | subgss 19115 | . . . . . 6 ⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → (𝑆‘𝑥) ⊆ 𝐵) |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ 𝐵) |
| 14 | 13 | sseld 3962 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) ∈ (𝑆‘𝑥) → (𝐹‘𝑥) ∈ 𝐵)) |
| 15 | 14 | ralimdva 3153 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) |
| 16 | 8, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵) |
| 17 | ffnfv 7114 | . 2 ⊢ (𝐹:𝐼⟶𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) | |
| 18 | 7, 16, 17 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 Xcixp 8916 finSupp cfsupp 9378 Basecbs 17233 SubGrpcsubg 19108 DProd cdprd 19981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-ixp 8917 df-subg 19111 df-dprd 19983 |
| This theorem is referenced by: dprdfcntz 20003 dprdssv 20004 dprdfid 20005 dprdfinv 20007 dprdfadd 20008 dprdfsub 20009 dprdfeq0 20010 dprdf11 20011 dprdlub 20014 dmdprdsplitlem 20025 dprddisj2 20027 dpjidcl 20046 |
| Copyright terms: Public domain | W3C validator |