Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvbase Structured version   Visualization version   GIF version

Theorem dvhvbase 40414
Description: The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom π‘Š). (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhvbase.h 𝐻 = (LHypβ€˜πΎ)
dvhvbase.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dvhvbase.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dvhvbase.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dvhvbase.v 𝑉 = (Baseβ€˜π‘ˆ)
Assertion
Ref Expression
dvhvbase ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑉 = (𝑇 Γ— 𝐸))

Proof of Theorem dvhvbase
Dummy variables 𝑓 𝑔 β„Ž 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhvbase.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 dvhvbase.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 dvhvbase.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
4 eqid 2724 . . . 4 ((EDRingβ€˜πΎ)β€˜π‘Š) = ((EDRingβ€˜πΎ)β€˜π‘Š)
5 dvhvbase.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5dvhset 40408 . . 3 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ π‘ˆ = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
76fveq2d 6885 . 2 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π‘ˆ) = (Baseβ€˜({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
8 dvhvbase.v . 2 𝑉 = (Baseβ€˜π‘ˆ)
92fvexi 6895 . . . 4 𝑇 ∈ V
103fvexi 6895 . . . 4 𝐸 ∈ V
119, 10xpex 7733 . . 3 (𝑇 Γ— 𝐸) ∈ V
12 eqid 2724 . . . 4 ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}) = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})
1312lmodbase 17267 . . 3 ((𝑇 Γ— 𝐸) ∈ V β†’ (𝑇 Γ— 𝐸) = (Baseβ€˜({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
1411, 13ax-mp 5 . 2 (𝑇 Γ— 𝐸) = (Baseβ€˜({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘Š)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
157, 8, 143eqtr4g 2789 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑉 = (𝑇 Γ— 𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3466   βˆͺ cun 3938  {csn 4620  {ctp 4624  βŸ¨cop 4626   ↦ cmpt 5221   Γ— cxp 5664   ∘ ccom 5670  β€˜cfv 6533   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  LHypclh 39311  LTrncltrn 39428  TEndoctendo 40079  EDRingcedring 40080  DVecHcdvh 40405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-sca 17209  df-vsca 17210  df-dvech 40406
This theorem is referenced by:  dvhelvbasei  40415  dvhgrp  40434  dvhlveclem  40435  dvhopellsm  40444  dibss  40496  diblss  40497  dicssdvh  40513  dicelval1stN  40515  dicelval2nd  40516  dicvaddcl  40517  dicvscacl  40518  diclss  40520  dihssxp  40579  dihvalrel  40606  dih1  40613  dih1dimatlem  40656
  Copyright terms: Public domain W3C validator