Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhsca Structured version   Visualization version   GIF version

Theorem dvhsca 39075
Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhsca.h 𝐻 = (LHyp‘𝐾)
dvhsca.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvhsca.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhsca.f 𝐹 = (Scalar‘𝑈)
Assertion
Ref Expression
dvhsca ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)

Proof of Theorem dvhsca
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2739 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
3 eqid 2739 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dvhsca.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 dvhsca.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvhset 39074 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
76fveq2d 6772 . 2 ((𝐾𝑋𝑊𝐻) → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
8 dvhsca.f . 2 𝐹 = (Scalar‘𝑈)
94fvexi 6782 . . 3 𝐷 ∈ V
10 eqid 2739 . . . 4 ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
1110lmodsca 17019 . . 3 (𝐷 ∈ V → 𝐷 = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
129, 11ax-mp 5 . 2 𝐷 = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
137, 8, 123eqtr4g 2804 1 ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cun 3889  {csn 4566  {ctp 4570  cop 4572  cmpt 5161   × cxp 5586  ccom 5592  cfv 6430  cmpo 7270  1st c1st 7815  2nd c2nd 7816  ndxcnx 16875  Basecbs 16893  +gcplusg 16943  Scalarcsca 16946   ·𝑠 cvsca 16947  LHypclh 37977  LTrncltrn 38094  TEndoctendo 38745  EDRingcedring 38746  DVecHcdvh 39071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-sca 16959  df-vsca 16960  df-dvech 39072
This theorem is referenced by:  dvhbase  39076  dvhfplusr  39077  dvhfmulr  39078  dvhfvadd  39084  dvhvaddass  39090  tendoinvcl  39097  tendolinv  39098  tendorinv  39099  dvhgrp  39100  dvhlveclem  39101  cdlemn4  39191  hlhilsbase2  39939  hlhilsplus2  39940  hlhilsmul2  39941
  Copyright terms: Public domain W3C validator