Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhsca | Structured version Visualization version GIF version |
Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvhsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhsca.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
dvhsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhsca.f | ⊢ 𝐹 = (Scalar‘𝑈) |
Ref | Expression |
---|---|
dvhsca | ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | dvhsca.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | dvhsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dvhset 38707 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
7 | 6 | fveq2d 6672 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
8 | dvhsca.f | . 2 ⊢ 𝐹 = (Scalar‘𝑈) | |
9 | 4 | fvexi 6682 | . . 3 ⊢ 𝐷 ∈ V |
10 | eqid 2738 | . . . 4 ⊢ ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) = ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) | |
11 | 10 | lmodsca 16735 | . . 3 ⊢ (𝐷 ∈ V → 𝐷 = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
12 | 9, 11 | ax-mp 5 | . 2 ⊢ 𝐷 = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
13 | 7, 8, 12 | 3eqtr4g 2798 | 1 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 Vcvv 3397 ∪ cun 3839 {csn 4513 {ctp 4517 〈cop 4519 ↦ cmpt 5107 × cxp 5517 ∘ ccom 5523 ‘cfv 6333 ∈ cmpo 7166 1st c1st 7705 2nd c2nd 7706 ndxcnx 16576 Basecbs 16579 +gcplusg 16661 Scalarcsca 16664 ·𝑠 cvsca 16665 LHypclh 37610 LTrncltrn 37727 TEndoctendo 38378 EDRingcedring 38379 DVecHcdvh 38704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-n0 11970 df-z 12056 df-uz 12318 df-fz 12975 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-plusg 16674 df-sca 16677 df-vsca 16678 df-dvech 38705 |
This theorem is referenced by: dvhbase 38709 dvhfplusr 38710 dvhfmulr 38711 dvhfvadd 38717 dvhvaddass 38723 tendoinvcl 38730 tendolinv 38731 tendorinv 38732 dvhgrp 38733 dvhlveclem 38734 cdlemn4 38824 hlhilsbase2 39568 hlhilsplus2 39569 hlhilsmul2 39570 |
Copyright terms: Public domain | W3C validator |