MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn6 Structured version   Visualization version   GIF version

Theorem ellspsn6 20897
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
ellspsn5b.v 𝑉 = (Base‘𝑊)
ellspsn5b.s 𝑆 = (LSubSp‘𝑊)
ellspsn5b.n 𝑁 = (LSpan‘𝑊)
ellspsn5b.w (𝜑𝑊 ∈ LMod)
ellspsn5b.a (𝜑𝑈𝑆)
Assertion
Ref Expression
ellspsn6 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))

Proof of Theorem ellspsn6
StepHypRef Expression
1 ellspsn5b.a . . . 4 (𝜑𝑈𝑆)
2 ellspsn5b.v . . . . 5 𝑉 = (Base‘𝑊)
3 ellspsn5b.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssel 20840 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
51, 4sylan 580 . . 3 ((𝜑𝑋𝑈) → 𝑋𝑉)
6 ellspsn5b.w . . . . 5 (𝜑𝑊 ∈ LMod)
76adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
81adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
9 simpr 484 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
10 ellspsn5b.n . . . . 5 𝑁 = (LSpan‘𝑊)
113, 10lspsnss 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
127, 8, 9, 11syl3anc 1373 . . 3 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
135, 12jca 511 . 2 ((𝜑𝑋𝑈) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))
142, 10lspsnid 20896 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
156, 14sylan 580 . . . 4 ((𝜑𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
16 ssel 3929 . . . 4 ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋𝑈))
1715, 16syl5com 31 . . 3 ((𝜑𝑋𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈𝑋𝑈))
1817impr 454 . 2 ((𝜑 ∧ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋𝑈)
1913, 18impbida 800 1 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  {csn 4577  cfv 6482  Basecbs 17120  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-lmod 20765  df-lss 20835  df-lsp 20875
This theorem is referenced by:  ellspsn5b  20898  lsmelval2  20989  dihjat1lem  41411
  Copyright terms: Public domain W3C validator