![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellspsn6 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
ellspsn6 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspsn5b.a | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
2 | ellspsn5b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ellspsn5b.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssel 20958 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
5 | 1, 4 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
6 | ellspsn5b.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
8 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
10 | ellspsn5b.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 3, 10 | lspsnss 21011 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
12 | 7, 8, 9, 11 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
13 | 5, 12 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) |
14 | 2, 10 | lspsnid 21014 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
15 | 6, 14 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
16 | ssel 4002 | . . . 4 ⊢ ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋 ∈ 𝑈)) | |
17 | 15, 16 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈 → 𝑋 ∈ 𝑈)) |
18 | 17 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋 ∈ 𝑈) |
19 | 13, 18 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: ellspsn5b 21016 lsmelval2 21107 dihjat1lem 41385 |
Copyright terms: Public domain | W3C validator |