| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn6 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ellspsn6 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.a | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 2 | ellspsn5b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ellspsn5b.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssel 20899 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 5 | 1, 4 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 6 | ellspsn5b.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 8 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 10 | ellspsn5b.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 11 | 3, 10 | lspsnss 20952 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 12 | 7, 8, 9, 11 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 13 | 5, 12 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 14 | 2, 10 | lspsnid 20955 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 15 | 6, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 16 | ssel 3957 | . . . 4 ⊢ ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋 ∈ 𝑈)) | |
| 17 | 15, 16 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈 → 𝑋 ∈ 𝑈)) |
| 18 | 17 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋 ∈ 𝑈) |
| 19 | 13, 18 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 ‘cfv 6536 Basecbs 17233 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-lmod 20824 df-lss 20894 df-lsp 20934 |
| This theorem is referenced by: ellspsn5b 20957 lsmelval2 21048 dihjat1lem 41452 |
| Copyright terms: Public domain | W3C validator |