| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn6 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ellspsn6 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.a | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 2 | ellspsn5b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ellspsn5b.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssel 20870 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 5 | 1, 4 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 6 | ellspsn5b.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 8 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 10 | ellspsn5b.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 11 | 3, 10 | lspsnss 20923 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 12 | 7, 8, 9, 11 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 13 | 5, 12 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 14 | 2, 10 | lspsnid 20926 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 15 | 6, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 16 | ssel 3923 | . . . 4 ⊢ ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋 ∈ 𝑈)) | |
| 17 | 15, 16 | syl5com 31 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈 → 𝑋 ∈ 𝑈)) |
| 18 | 17 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋 ∈ 𝑈) |
| 19 | 13, 18 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4573 ‘cfv 6481 Basecbs 17120 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-lmod 20795 df-lss 20865 df-lsp 20905 |
| This theorem is referenced by: ellspsn5b 20928 lsmelval2 21019 dihjat1lem 41537 |
| Copyright terms: Public domain | W3C validator |