Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjat1lem Structured version   Visualization version   GIF version

Theorem dihjat1lem 41526
Description: Subspace sum of a closed subspace and an atom. (pmapjat1 39951 analog.) TODO: merge into dihjat1 41527? (Contributed by NM, 18-Aug-2014.)
Hypotheses
Ref Expression
dihjat1.h 𝐻 = (LHyp‘𝐾)
dihjat1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjat1.v 𝑉 = (Base‘𝑈)
dihjat1.p = (LSSum‘𝑈)
dihjat1.n 𝑁 = (LSpan‘𝑈)
dihjat1.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjat1.j = ((joinH‘𝐾)‘𝑊)
dihjat1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjat1.x (𝜑𝑋 ∈ ran 𝐼)
dihjat1.o 0 = (0g𝑈)
dihjat1lem.q (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
dihjat1lem (𝜑 → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))

Proof of Theorem dihjat1lem
Dummy variables 𝑦 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋 = { 0 }) → 𝑋 = { 0 })
21oveq1d 7361 . . 3 ((𝜑𝑋 = { 0 }) → (𝑋 (𝑁‘{𝑇})) = ({ 0 } (𝑁‘{𝑇})))
31oveq1d 7361 . . . 4 ((𝜑𝑋 = { 0 }) → (𝑋 (𝑁‘{𝑇})) = ({ 0 } (𝑁‘{𝑇})))
4 dihjat1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dihjat1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dihjat1.o . . . . . . 7 0 = (0g𝑈)
7 dihjat1.i . . . . . . 7 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihjat1.j . . . . . . 7 = ((joinH‘𝐾)‘𝑊)
9 dihjat1.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 dihjat1lem.q . . . . . . . . 9 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
11 eldifi 4078 . . . . . . . . 9 (𝑇 ∈ (𝑉 ∖ { 0 }) → 𝑇𝑉)
1210, 11syl 17 . . . . . . . 8 (𝜑𝑇𝑉)
13 dihjat1.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
14 dihjat1.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
154, 5, 13, 14, 7dihlsprn 41429 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝑉) → (𝑁‘{𝑇}) ∈ ran 𝐼)
169, 12, 15syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ∈ ran 𝐼)
174, 5, 6, 7, 8, 9, 16djh02 41511 . . . . . 6 (𝜑 → ({ 0 } (𝑁‘{𝑇})) = (𝑁‘{𝑇}))
184, 5, 9dvhlmod 41208 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
19 eqid 2731 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2013, 19, 14lspsncl 20910 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑇𝑉) → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈))
2118, 12, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈))
2219lsssubg 20890 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑇}) ∈ (SubGrp‘𝑈))
2318, 21, 22syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ∈ (SubGrp‘𝑈))
24 dihjat1.p . . . . . . . 8 = (LSSum‘𝑈)
256, 24lsm02 19584 . . . . . . 7 ((𝑁‘{𝑇}) ∈ (SubGrp‘𝑈) → ({ 0 } (𝑁‘{𝑇})) = (𝑁‘{𝑇}))
2623, 25syl 17 . . . . . 6 (𝜑 → ({ 0 } (𝑁‘{𝑇})) = (𝑁‘{𝑇}))
2717, 26eqtr4d 2769 . . . . 5 (𝜑 → ({ 0 } (𝑁‘{𝑇})) = ({ 0 } (𝑁‘{𝑇})))
2827adantr 480 . . . 4 ((𝜑𝑋 = { 0 }) → ({ 0 } (𝑁‘{𝑇})) = ({ 0 } (𝑁‘{𝑇})))
293, 28eqtr4d 2769 . . 3 ((𝜑𝑋 = { 0 }) → (𝑋 (𝑁‘{𝑇})) = ({ 0 } (𝑁‘{𝑇})))
302, 29eqtr4d 2769 . 2 ((𝜑𝑋 = { 0 }) → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))
3118adantr 480 . . . 4 ((𝜑𝑋 ≠ { 0 }) → 𝑈 ∈ LMod)
32 dihjat1.x . . . . . . . 8 (𝜑𝑋 ∈ ran 𝐼)
334, 5, 7, 13dihrnss 41376 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋𝑉)
349, 32, 33syl2anc 584 . . . . . . 7 (𝜑𝑋𝑉)
3513, 19lssss 20869 . . . . . . . 8 ((𝑁‘{𝑇}) ∈ (LSubSp‘𝑈) → (𝑁‘{𝑇}) ⊆ 𝑉)
3621, 35syl 17 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ 𝑉)
374, 7, 5, 13, 8djhcl 41498 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉 ∧ (𝑁‘{𝑇}) ⊆ 𝑉)) → (𝑋 (𝑁‘{𝑇})) ∈ ran 𝐼)
389, 34, 36, 37syl12anc 836 . . . . . 6 (𝜑 → (𝑋 (𝑁‘{𝑇})) ∈ ran 𝐼)
394, 5, 7, 13dihrnss 41376 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 (𝑁‘{𝑇})) ∈ ran 𝐼) → (𝑋 (𝑁‘{𝑇})) ⊆ 𝑉)
409, 38, 39syl2anc 584 . . . . 5 (𝜑 → (𝑋 (𝑁‘{𝑇})) ⊆ 𝑉)
4140adantr 480 . . . 4 ((𝜑𝑋 ≠ { 0 }) → (𝑋 (𝑁‘{𝑇})) ⊆ 𝑉)
424, 5, 7, 19dihrnlss 41375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ∈ (LSubSp‘𝑈))
439, 32, 42syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ (LSubSp‘𝑈))
4419, 24lsmcl 21017 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋 ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) → (𝑋 (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈))
4518, 43, 21, 44syl3anc 1373 . . . . 5 (𝜑 → (𝑋 (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈))
4645adantr 480 . . . 4 ((𝜑𝑋 ≠ { 0 }) → (𝑋 (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈))
47 simplr 768 . . . . . . . 8 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑋 ≠ { 0 })
489ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4932ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑋 ∈ ran 𝐼)
50 simpr 484 . . . . . . . . 9 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥 ∈ (𝑉 ∖ { 0 }))
5110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑇 ∈ (𝑉 ∖ { 0 }))
524, 5, 13, 6, 14, 7, 8, 48, 49, 50, 51djhcvat42 41513 . . . . . . . 8 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑋 ≠ { 0 } ∧ (𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇}))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇})))))
5347, 52mpand 695 . . . . . . 7 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇})) → ∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇})))))
54 simprrl 780 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → (𝑁‘{𝑦}) ⊆ 𝑋)
5518ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑈 ∈ LMod)
5643ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑋 ∈ (LSubSp‘𝑈))
57 eldifi 4078 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑉 ∖ { 0 }) → 𝑦𝑉)
5857ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑦𝑉)
5913, 19, 14, 55, 56, 58ellspsn5b 20928 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → (𝑦𝑋 ↔ (𝑁‘{𝑦}) ⊆ 𝑋))
6054, 59mpbird 257 . . . . . . . . . 10 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑦𝑋)
6112ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑇𝑉)
6213, 14lspsnid 20926 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ∈ (𝑁‘{𝑇}))
6355, 61, 62syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → 𝑇 ∈ (𝑁‘{𝑇}))
64 simprrr 781 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇})))
65 sneq 4583 . . . . . . . . . . . . . . 15 (𝑧 = 𝑇 → {𝑧} = {𝑇})
6665fveq2d 6826 . . . . . . . . . . . . . 14 (𝑧 = 𝑇 → (𝑁‘{𝑧}) = (𝑁‘{𝑇}))
6766oveq2d 7362 . . . . . . . . . . . . 13 (𝑧 = 𝑇 → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) = ((𝑁‘{𝑦}) (𝑁‘{𝑇})))
6867sseq2d 3962 . . . . . . . . . . . 12 (𝑧 = 𝑇 → ((𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))
6968rspcev 3572 . . . . . . . . . . 11 ((𝑇 ∈ (𝑁‘{𝑇}) ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))) → ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
7063, 64, 69syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
7160, 70jca 511 . . . . . . . . 9 ((((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))))) → (𝑦𝑋 ∧ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
7271ex 412 . . . . . . . 8 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇})))) → (𝑦𝑋 ∧ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
7372reximdv2 3142 . . . . . . 7 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑇}))) → ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
7453, 73syld 47 . . . . . 6 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇})) → ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
7574anim2d 612 . . . . 5 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑥𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇}))) → (𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
764, 5, 7, 19dihrnlss 41375 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 (𝑁‘{𝑇})) ∈ ran 𝐼) → (𝑋 (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈))
779, 38, 76syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈))
7813, 19, 14, 18, 77ellspsn6 20927 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) ↔ (𝑥𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇})))))
7978ad2antrr 726 . . . . 5 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) ↔ (𝑥𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 (𝑁‘{𝑇})))))
8013, 19, 24, 14, 18, 43, 21lsmelval2 21019 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) ↔ (𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
819ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8243ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑋 ∈ (LSubSp‘𝑈))
83 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑦𝑋)
8413, 19lssel 20870 . . . . . . . . . . . . 13 ((𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑦𝑋) → 𝑦𝑉)
8582, 83, 84syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑦𝑉)
8621ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈))
87 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ (𝑁‘{𝑇}))
8813, 19lssel 20870 . . . . . . . . . . . . 13 (((𝑁‘{𝑇}) ∈ (LSubSp‘𝑈) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧𝑉)
8986, 87, 88syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧𝑉)
904, 5, 13, 24, 14, 7, 8, 81, 85, 89djhlsmat 41525 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) = ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
9190sseq2d 3962 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
9291rexbidva 3154 . . . . . . . . 9 ((𝜑𝑦𝑋) → (∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
9392rexbidva 3154 . . . . . . . 8 (𝜑 → (∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
9493anbi2d 630 . . . . . . 7 (𝜑 → ((𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
9580, 94bitrd 279 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) ↔ (𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
9695ad2antrr 726 . . . . 5 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) ↔ (𝑥𝑉 ∧ ∃𝑦𝑋𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
9775, 79, 963imtr4d 294 . . . 4 (((𝜑𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 (𝑁‘{𝑇})) → 𝑥 ∈ (𝑋 (𝑁‘{𝑇}))))
986, 19, 31, 41, 46, 97lssssr 20887 . . 3 ((𝜑𝑋 ≠ { 0 }) → (𝑋 (𝑁‘{𝑇})) ⊆ (𝑋 (𝑁‘{𝑇})))
994, 5, 13, 24, 8, 9, 34, 36djhsumss 41505 . . . 4 (𝜑 → (𝑋 (𝑁‘{𝑇})) ⊆ (𝑋 (𝑁‘{𝑇})))
10099adantr 480 . . 3 ((𝜑𝑋 ≠ { 0 }) → (𝑋 (𝑁‘{𝑇})) ⊆ (𝑋 (𝑁‘{𝑇})))
10198, 100eqssd 3947 . 2 ((𝜑𝑋 ≠ { 0 }) → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))
10230, 101pm2.61dane 3015 1 (𝜑 → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3894  wss 3897  {csn 4573  ran crn 5615  cfv 6481  (class class class)co 7346  Basecbs 17120  0gc0g 17343  SubGrpcsubg 19033  LSSumclsm 19546  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  HLchlt 39448  LHypclh 40082  DVecHcdvh 41176  DIsoHcdih 41326  joinHcdjh 41492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lsatoms 39074  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257  df-tgrp 40841  df-tendo 40853  df-edring 40855  df-dveca 41101  df-disoa 41127  df-dvech 41177  df-dib 41237  df-dic 41271  df-dih 41327  df-doch 41446  df-djh 41493
This theorem is referenced by:  dihjat1  41527
  Copyright terms: Public domain W3C validator