| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → 𝑋 = { 0 }) |
| 2 | 1 | oveq1d 7446 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → (𝑋 ∨ (𝑁‘{𝑇})) = ({ 0 } ∨ (𝑁‘{𝑇}))) |
| 3 | 1 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → (𝑋 ⊕ (𝑁‘{𝑇})) = ({ 0 } ⊕ (𝑁‘{𝑇}))) |
| 4 | | dihjat1.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | dihjat1.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 6 | | dihjat1.o |
. . . . . . 7
⊢ 0 =
(0g‘𝑈) |
| 7 | | dihjat1.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| 8 | | dihjat1.j |
. . . . . . 7
⊢ ∨ =
((joinH‘𝐾)‘𝑊) |
| 9 | | dihjat1.k |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 10 | | dihjat1lem.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 11 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝑉 ∖ { 0 }) → 𝑇 ∈ 𝑉) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 13 | | dihjat1.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑈) |
| 14 | | dihjat1.n |
. . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑈) |
| 15 | 4, 5, 13, 14, 7 | dihlsprn 41333 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝑉) → (𝑁‘{𝑇}) ∈ ran 𝐼) |
| 16 | 9, 12, 15 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑇}) ∈ ran 𝐼) |
| 17 | 4, 5, 6, 7, 8, 9, 16 | djh02 41415 |
. . . . . 6
⊢ (𝜑 → ({ 0 } ∨ (𝑁‘{𝑇})) = (𝑁‘{𝑇})) |
| 18 | 4, 5, 9 | dvhlmod 41112 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 19 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 20 | 13, 19, 14 | lspsncl 20975 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉) → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) |
| 21 | 18, 12, 20 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) |
| 22 | 19 | lsssubg 20955 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑇}) ∈ (SubGrp‘𝑈)) |
| 23 | 18, 21, 22 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑇}) ∈ (SubGrp‘𝑈)) |
| 24 | | dihjat1.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝑈) |
| 25 | 6, 24 | lsm02 19690 |
. . . . . . 7
⊢ ((𝑁‘{𝑇}) ∈ (SubGrp‘𝑈) → ({ 0 } ⊕ (𝑁‘{𝑇})) = (𝑁‘{𝑇})) |
| 26 | 23, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({ 0 } ⊕ (𝑁‘{𝑇})) = (𝑁‘{𝑇})) |
| 27 | 17, 26 | eqtr4d 2780 |
. . . . 5
⊢ (𝜑 → ({ 0 } ∨ (𝑁‘{𝑇})) = ({ 0 } ⊕ (𝑁‘{𝑇}))) |
| 28 | 27 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → ({ 0 } ∨ (𝑁‘{𝑇})) = ({ 0 } ⊕ (𝑁‘{𝑇}))) |
| 29 | 3, 28 | eqtr4d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → (𝑋 ⊕ (𝑁‘{𝑇})) = ({ 0 } ∨ (𝑁‘{𝑇}))) |
| 30 | 2, 29 | eqtr4d 2780 |
. 2
⊢ ((𝜑 ∧ 𝑋 = { 0 }) → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
| 31 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → 𝑈 ∈ LMod) |
| 32 | | dihjat1.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
| 33 | 4, 5, 7, 13 | dihrnss 41280 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ 𝑉) |
| 34 | 9, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| 35 | 13, 19 | lssss 20934 |
. . . . . . . 8
⊢ ((𝑁‘{𝑇}) ∈ (LSubSp‘𝑈) → (𝑁‘{𝑇}) ⊆ 𝑉) |
| 36 | 21, 35 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ 𝑉) |
| 37 | 4, 7, 5, 13, 8 | djhcl 41402 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑉 ∧ (𝑁‘{𝑇}) ⊆ 𝑉)) → (𝑋 ∨ (𝑁‘{𝑇})) ∈ ran 𝐼) |
| 38 | 9, 34, 36, 37 | syl12anc 837 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) ∈ ran 𝐼) |
| 39 | 4, 5, 7, 13 | dihrnss 41280 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ (𝑁‘{𝑇})) ∈ ran 𝐼) → (𝑋 ∨ (𝑁‘{𝑇})) ⊆ 𝑉) |
| 40 | 9, 38, 39 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) ⊆ 𝑉) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → (𝑋 ∨ (𝑁‘{𝑇})) ⊆ 𝑉) |
| 42 | 4, 5, 7, 19 | dihrnlss 41279 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ∈ (LSubSp‘𝑈)) |
| 43 | 9, 32, 42 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) |
| 44 | 19, 24 | lsmcl 21082 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) → (𝑋 ⊕ (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈)) |
| 45 | 18, 43, 21, 44 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝑋 ⊕ (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈)) |
| 46 | 45 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → (𝑋 ⊕ (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈)) |
| 47 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑋 ≠ { 0 }) |
| 48 | 9 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 49 | 32 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑋 ∈ ran 𝐼) |
| 50 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥 ∈ (𝑉 ∖ { 0 })) |
| 51 | 10 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 52 | 4, 5, 13, 6, 14, 7, 8, 48, 49, 50, 51 | djhcvat42 41417 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑋 ≠ { 0 } ∧ (𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) |
| 53 | 47, 52 | mpand 695 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇})) → ∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) |
| 54 | | simprrl 781 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → (𝑁‘{𝑦}) ⊆ 𝑋) |
| 55 | 18 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑈 ∈ LMod) |
| 56 | 43 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑋 ∈ (LSubSp‘𝑈)) |
| 57 | | eldifi 4131 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑉 ∖ { 0 }) → 𝑦 ∈ 𝑉) |
| 58 | 57 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑦 ∈ 𝑉) |
| 59 | 13, 19, 14, 55, 56, 58 | ellspsn5b 20993 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → (𝑦 ∈ 𝑋 ↔ (𝑁‘{𝑦}) ⊆ 𝑋)) |
| 60 | 54, 59 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑦 ∈ 𝑋) |
| 61 | 12 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑇 ∈ 𝑉) |
| 62 | 13, 14 | lspsnid 20991 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉) → 𝑇 ∈ (𝑁‘{𝑇})) |
| 63 | 55, 61, 62 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → 𝑇 ∈ (𝑁‘{𝑇})) |
| 64 | | simprrr 782 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))) |
| 65 | | sneq 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑇 → {𝑧} = {𝑇}) |
| 66 | 65 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑇 → (𝑁‘{𝑧}) = (𝑁‘{𝑇})) |
| 67 | 66 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑇 → ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})) = ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))) |
| 68 | 67 | sseq2d 4016 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑇 → ((𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})) ↔ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇})))) |
| 69 | 68 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ (𝑁‘{𝑇}) ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))) → ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))) |
| 70 | 63, 64, 69 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))) |
| 71 | 60, 70 | jca 511 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) ∧ (𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))))) → (𝑦 ∈ 𝑋 ∧ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 72 | 71 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑦 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇})))) → (𝑦 ∈ 𝑋 ∧ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))))) |
| 73 | 72 | reximdv2 3164 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (∃𝑦 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑦}) ⊆ 𝑋 ∧ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑇}))) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 74 | 53, 73 | syld 47 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇})) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 75 | 74 | anim2d 612 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝑥 ∈ 𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))) → (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))))) |
| 76 | 4, 5, 7, 19 | dihrnlss 41279 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ (𝑁‘{𝑇})) ∈ ran 𝐼) → (𝑋 ∨ (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈)) |
| 77 | 9, 38, 76 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) ∈ (LSubSp‘𝑈)) |
| 78 | 13, 19, 14, 18, 77 | ellspsn6 20992 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∨ (𝑁‘{𝑇})) ↔ (𝑥 ∈ 𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))))) |
| 79 | 78 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 ∨ (𝑁‘{𝑇})) ↔ (𝑥 ∈ 𝑉 ∧ (𝑁‘{𝑥}) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))))) |
| 80 | 13, 19, 24, 14, 18, 43, 21 | lsmelval2 21084 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋 ⊕ (𝑁‘{𝑇})) ↔ (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
| 81 | 9 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 82 | 43 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑋 ∈ (LSubSp‘𝑈)) |
| 83 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑦 ∈ 𝑋) |
| 84 | 13, 19 | lssel 20935 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑉) |
| 85 | 82, 83, 84 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑦 ∈ 𝑉) |
| 86 | 21 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑁‘{𝑇}) ∈ (LSubSp‘𝑈)) |
| 87 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ (𝑁‘{𝑇})) |
| 88 | 13, 19 | lssel 20935 |
. . . . . . . . . . . . 13
⊢ (((𝑁‘{𝑇}) ∈ (LSubSp‘𝑈) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ 𝑉) |
| 89 | 86, 87, 88 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ 𝑉) |
| 90 | 4, 5, 13, 24, 14, 7, 8, 81, 85, 89 | djhlsmat 41429 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) = ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))) |
| 91 | 90 | sseq2d 4016 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ↔ (𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 92 | 91 | rexbidva 3177 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ↔ ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 93 | 92 | rexbidva 3177 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ↔ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧})))) |
| 94 | 93 | anbi2d 630 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) ↔ (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))))) |
| 95 | 80, 94 | bitrd 279 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ⊕ (𝑁‘{𝑇})) ↔ (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))))) |
| 96 | 95 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 ⊕ (𝑁‘{𝑇})) ↔ (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ (𝑁‘{𝑇})(𝑁‘{𝑥}) ⊆ ((𝑁‘{𝑦}) ∨ (𝑁‘{𝑧}))))) |
| 97 | 75, 79, 96 | 3imtr4d 294 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ≠ { 0 }) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ (𝑋 ∨ (𝑁‘{𝑇})) → 𝑥 ∈ (𝑋 ⊕ (𝑁‘{𝑇})))) |
| 98 | 6, 19, 31, 41, 46, 97 | lssssr 20952 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → (𝑋 ∨ (𝑁‘{𝑇})) ⊆ (𝑋 ⊕ (𝑁‘{𝑇}))) |
| 99 | 4, 5, 13, 24, 8, 9, 34, 36 | djhsumss 41409 |
. . . 4
⊢ (𝜑 → (𝑋 ⊕ (𝑁‘{𝑇})) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))) |
| 100 | 99 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → (𝑋 ⊕ (𝑁‘{𝑇})) ⊆ (𝑋 ∨ (𝑁‘{𝑇}))) |
| 101 | 98, 100 | eqssd 4001 |
. 2
⊢ ((𝜑 ∧ 𝑋 ≠ { 0 }) → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
| 102 | 30, 101 | pm2.61dane 3029 |
1
⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |