Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version |
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20198 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
4 | 3 | sselda 3921 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Basecbs 16912 LSubSpclss 20193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-lss 20194 |
This theorem is referenced by: lssvsubcl 20205 lssvancl1 20206 lssvancl2 20207 lss0cl 20208 lssvacl 20216 lssvscl 20217 lssvnegcl 20218 lspsnel6 20256 lspsnel5a 20258 lssats2 20262 lsmcl 20345 lsmelval2 20347 lsmcv 20403 ocvin 20879 lsatel 37019 lsmsat 37022 lssatomic 37025 lssats 37026 lsat0cv 37047 lshpkrlem1 37124 lshpkrlem5 37128 lshpkr 37131 dihjat1lem 39442 dochsatshpb 39466 lcfrvalsnN 39555 lcfrlem4 39559 lcfrlem6 39561 lcfrlem16 39572 lcfrlem29 39585 lcfrlem35 39591 mapdval4N 39646 mapdpglem2a 39688 mapdpglem23 39708 |
Copyright terms: Public domain | W3C validator |