Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version |
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20113 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
4 | 3 | sselda 3917 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-lss 20109 |
This theorem is referenced by: lssvsubcl 20120 lssvancl1 20121 lssvancl2 20122 lss0cl 20123 lssvacl 20131 lssvscl 20132 lssvnegcl 20133 lspsnel6 20171 lspsnel5a 20173 lssats2 20177 lsmcl 20260 lsmelval2 20262 lsmcv 20318 ocvin 20791 lsatel 36946 lsmsat 36949 lssatomic 36952 lssats 36953 lsat0cv 36974 lshpkrlem1 37051 lshpkrlem5 37055 lshpkr 37058 dihjat1lem 39369 dochsatshpb 39393 lcfrvalsnN 39482 lcfrlem4 39486 lcfrlem6 39488 lcfrlem16 39499 lcfrlem29 39512 lcfrlem35 39518 mapdval4N 39573 mapdpglem2a 39615 mapdpglem23 39635 |
Copyright terms: Public domain | W3C validator |