| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version | ||
| Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20842 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 4 | 3 | sselda 3946 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 LSubSpclss 20837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-lss 20838 |
| This theorem is referenced by: lssvacl 20849 lssvsubcl 20850 lssvancl1 20851 lssvancl2 20852 lss0cl 20853 lssvscl 20861 lssvnegcl 20862 ellspsn6 20900 ellspsn5 20902 lssats2 20906 lsmcl 20990 lsmelval2 20992 lsmcv 21051 ocvin 21583 lsatel 38998 lsmsat 39001 lssatomic 39004 lssats 39005 lsat0cv 39026 lshpkrlem1 39103 lshpkrlem5 39107 lshpkr 39110 dihjat1lem 41422 dochsatshpb 41446 lcfrvalsnN 41535 lcfrlem4 41539 lcfrlem6 41541 lcfrlem16 41552 lcfrlem29 41565 lcfrlem35 41571 mapdval4N 41626 mapdpglem2a 41668 mapdpglem23 41688 |
| Copyright terms: Public domain | W3C validator |