| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version | ||
| Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20893 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 4 | 3 | sselda 3958 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 LSubSpclss 20888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-lss 20889 |
| This theorem is referenced by: lssvacl 20900 lssvsubcl 20901 lssvancl1 20902 lssvancl2 20903 lss0cl 20904 lssvscl 20912 lssvnegcl 20913 ellspsn6 20951 ellspsn5 20953 lssats2 20957 lsmcl 21041 lsmelval2 21043 lsmcv 21102 ocvin 21634 lsatel 39023 lsmsat 39026 lssatomic 39029 lssats 39030 lsat0cv 39051 lshpkrlem1 39128 lshpkrlem5 39132 lshpkr 39135 dihjat1lem 41447 dochsatshpb 41471 lcfrvalsnN 41560 lcfrlem4 41564 lcfrlem6 41566 lcfrlem16 41577 lcfrlem29 41590 lcfrlem35 41596 mapdval4N 41651 mapdpglem2a 41693 mapdpglem23 41713 |
| Copyright terms: Public domain | W3C validator |