| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version | ||
| Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20870 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 4 | 3 | sselda 3934 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 LSubSpclss 20865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-lss 20866 |
| This theorem is referenced by: lssvacl 20877 lssvsubcl 20878 lssvancl1 20879 lssvancl2 20880 lss0cl 20881 lssvscl 20889 lssvnegcl 20890 ellspsn6 20928 ellspsn5 20930 lssats2 20934 lsmcl 21018 lsmelval2 21020 lsmcv 21079 ocvin 21612 lsatel 39050 lsmsat 39053 lssatomic 39056 lssats 39057 lsat0cv 39078 lshpkrlem1 39155 lshpkrlem5 39159 lshpkr 39162 dihjat1lem 41473 dochsatshpb 41497 lcfrvalsnN 41586 lcfrlem4 41590 lcfrlem6 41592 lcfrlem16 41603 lcfrlem29 41616 lcfrlem35 41622 mapdval4N 41677 mapdpglem2a 41719 mapdpglem23 41739 |
| Copyright terms: Public domain | W3C validator |