| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version | ||
| Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20849 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 4 | 3 | sselda 3949 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-lss 20845 |
| This theorem is referenced by: lssvacl 20856 lssvsubcl 20857 lssvancl1 20858 lssvancl2 20859 lss0cl 20860 lssvscl 20868 lssvnegcl 20869 ellspsn6 20907 ellspsn5 20909 lssats2 20913 lsmcl 20997 lsmelval2 20999 lsmcv 21058 ocvin 21590 lsatel 39005 lsmsat 39008 lssatomic 39011 lssats 39012 lsat0cv 39033 lshpkrlem1 39110 lshpkrlem5 39114 lshpkr 39117 dihjat1lem 41429 dochsatshpb 41453 lcfrvalsnN 41542 lcfrlem4 41546 lcfrlem6 41548 lcfrlem16 41559 lcfrlem29 41572 lcfrlem35 41578 mapdval4N 41633 mapdpglem2a 41675 mapdpglem23 41695 |
| Copyright terms: Public domain | W3C validator |