![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version |
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 19255 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
4 | 3 | sselda 3798 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 Basecbs 16184 LSubSpclss 19250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-lss 19251 |
This theorem is referenced by: lssvsubcl 19262 lssvancl1 19263 lssvancl2 19264 lss0cl 19265 lssvacl 19275 lssvscl 19276 lssvnegcl 19277 lspsnel6 19315 lspsnel5a 19317 lssats2 19321 lsmcl 19404 lsmelval2 19406 lsmcv 19463 ocvin 20343 lsatel 35026 lsmsat 35029 lssatomic 35032 lssats 35033 lsat0cv 35054 lshpkrlem1 35131 lshpkrlem5 35135 lshpkr 35138 dihjat1lem 37449 dochsatshpb 37473 lcfrvalsnN 37562 lcfrlem4 37566 lcfrlem6 37568 lcfrlem16 37579 lcfrlem29 37592 lcfrlem35 37598 mapdval4N 37653 mapdpglem2a 37695 mapdpglem23 37715 |
Copyright terms: Public domain | W3C validator |