MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssel Structured version   Visualization version   GIF version

Theorem lssel 20843
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssel ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)

Proof of Theorem lssel
StepHypRef Expression
1 lssss.v . . 3 𝑉 = (Base‘𝑊)
2 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20842 . 2 (𝑈𝑆𝑈𝑉)
43sselda 3946 1 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  LSubSpclss 20837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lss 20838
This theorem is referenced by:  lssvacl  20849  lssvsubcl  20850  lssvancl1  20851  lssvancl2  20852  lss0cl  20853  lssvscl  20861  lssvnegcl  20862  ellspsn6  20900  ellspsn5  20902  lssats2  20906  lsmcl  20990  lsmelval2  20992  lsmcv  21051  ocvin  21583  lsatel  38998  lsmsat  39001  lssatomic  39004  lssats  39005  lsat0cv  39026  lshpkrlem1  39103  lshpkrlem5  39107  lshpkr  39110  dihjat1lem  41422  dochsatshpb  41446  lcfrvalsnN  41535  lcfrlem4  41539  lcfrlem6  41541  lcfrlem16  41552  lcfrlem29  41565  lcfrlem35  41571  mapdval4N  41626  mapdpglem2a  41668  mapdpglem23  41688
  Copyright terms: Public domain W3C validator