| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssel | Structured version Visualization version GIF version | ||
| Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssel | ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20873 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 4 | 3 | sselda 3930 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Basecbs 17124 LSubSpclss 20868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-lss 20869 |
| This theorem is referenced by: lssvacl 20880 lssvsubcl 20881 lssvancl1 20882 lssvancl2 20883 lss0cl 20884 lssvscl 20892 lssvnegcl 20893 ellspsn6 20931 ellspsn5 20933 lssats2 20937 lsmcl 21021 lsmelval2 21023 lsmcv 21082 ocvin 21615 lsatel 39127 lsmsat 39130 lssatomic 39133 lssats 39134 lsat0cv 39155 lshpkrlem1 39232 lshpkrlem5 39236 lshpkr 39239 dihjat1lem 41550 dochsatshpb 41574 lcfrvalsnN 41663 lcfrlem4 41667 lcfrlem6 41669 lcfrlem16 41680 lcfrlem29 41693 lcfrlem35 41699 mapdval4N 41754 mapdpglem2a 41796 mapdpglem23 41816 |
| Copyright terms: Public domain | W3C validator |