MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5b Structured version   Visualization version   GIF version

Theorem ellspsn5b 21016
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.)
Hypotheses
Ref Expression
ellspsn5b.v 𝑉 = (Base‘𝑊)
ellspsn5b.s 𝑆 = (LSubSp‘𝑊)
ellspsn5b.n 𝑁 = (LSpan‘𝑊)
ellspsn5b.w (𝜑𝑊 ∈ LMod)
ellspsn5b.a (𝜑𝑈𝑆)
ellspsn5b.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellspsn5b (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))

Proof of Theorem ellspsn5b
StepHypRef Expression
1 ellspsn5b.x . 2 (𝜑𝑋𝑉)
2 ellspsn5b.v . . 3 𝑉 = (Base‘𝑊)
3 ellspsn5b.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5b.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5b.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5b.a . . 3 (𝜑𝑈𝑆)
72, 3, 4, 5, 6ellspsn6 21015 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
81, 7mpbirand 706 1 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wss 3976  {csn 4648  cfv 6573  Basecbs 17258  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-lmod 20882  df-lss 20953  df-lsp 20993
This theorem is referenced by:  ellspsn5  21017  lspprid1  21018  lspsnss2  21026  lsmelpr  21113  lspsncmp  21141  lspsnne1  21142  lspsnne2  21143  lspsneq  21147  lspindpi  21157  islbs2  21179  lindsadd  37573  lindsenlbs  37575  lsatelbN  38962  lsmsat  38964  lsatfixedN  38965  l1cvpat  39010  dia2dimlem5  41025  dochsncom  41339  dihjat1lem  41385  dvh4dimlem  41400  lclkrlem2a  41464  lcfrlem6  41504  lcfrlem20  41519  lcfrlem26  41525  lcfrlem36  41535  mapdval2N  41587  mapdrvallem2  41602  mapdindp  41628  mapdh6aN  41692  lspindp5  41727  mapdh8ab  41734  mapdh8e  41741  hdmap1l6a  41766  hdmaprnlem3eN  41815  hdmapoc  41888
  Copyright terms: Public domain W3C validator