MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5b Structured version   Visualization version   GIF version

Theorem ellspsn5b 20917
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.)
Hypotheses
Ref Expression
ellspsn5b.v 𝑉 = (Base‘𝑊)
ellspsn5b.s 𝑆 = (LSubSp‘𝑊)
ellspsn5b.n 𝑁 = (LSpan‘𝑊)
ellspsn5b.w (𝜑𝑊 ∈ LMod)
ellspsn5b.a (𝜑𝑈𝑆)
ellspsn5b.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellspsn5b (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))

Proof of Theorem ellspsn5b
StepHypRef Expression
1 ellspsn5b.x . 2 (𝜑𝑋𝑉)
2 ellspsn5b.v . . 3 𝑉 = (Base‘𝑊)
3 ellspsn5b.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5b.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5b.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5b.a . . 3 (𝜑𝑈𝑆)
72, 3, 4, 5, 6ellspsn6 20916 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
81, 7mpbirand 707 1 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3905  {csn 4579  cfv 6486  Basecbs 17139  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-lmod 20784  df-lss 20854  df-lsp 20894
This theorem is referenced by:  ellspsn5  20918  lspprid1  20919  lspsnss2  20927  lsmelpr  21014  lspsncmp  21042  lspsnne1  21043  lspsnne2  21044  lspsneq  21048  lspindpi  21058  islbs2  21080  lindsadd  37612  lindsenlbs  37614  lsatelbN  39004  lsmsat  39006  lsatfixedN  39007  l1cvpat  39052  dia2dimlem5  41067  dochsncom  41381  dihjat1lem  41427  dvh4dimlem  41442  lclkrlem2a  41506  lcfrlem6  41546  lcfrlem20  41561  lcfrlem26  41567  lcfrlem36  41577  mapdval2N  41629  mapdrvallem2  41644  mapdindp  41670  mapdh6aN  41734  lspindp5  41769  mapdh8ab  41776  mapdh8e  41783  hdmap1l6a  41808  hdmaprnlem3eN  41857  hdmapoc  41930
  Copyright terms: Public domain W3C validator