| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5b | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
| Ref | Expression |
|---|---|
| ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellspsn5b | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | ellspsn5b.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ellspsn5b.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5b.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5b.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5b.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3, 4, 5, 6 | ellspsn6 20922 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| 8 | 1, 7 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4571 ‘cfv 6476 Basecbs 17115 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-lmod 20790 df-lss 20860 df-lsp 20900 |
| This theorem is referenced by: ellspsn5 20924 lspprid1 20925 lspsnss2 20933 lsmelpr 21020 lspsncmp 21048 lspsnne1 21049 lspsnne2 21050 lspsneq 21054 lspindpi 21064 islbs2 21086 lindsadd 37653 lindsenlbs 37655 lsatelbN 39045 lsmsat 39047 lsatfixedN 39048 l1cvpat 39093 dia2dimlem5 41107 dochsncom 41421 dihjat1lem 41467 dvh4dimlem 41482 lclkrlem2a 41546 lcfrlem6 41586 lcfrlem20 41601 lcfrlem26 41607 lcfrlem36 41617 mapdval2N 41669 mapdrvallem2 41684 mapdindp 41710 mapdh6aN 41774 lspindp5 41809 mapdh8ab 41816 mapdh8e 41823 hdmap1l6a 41848 hdmaprnlem3eN 41897 hdmapoc 41970 |
| Copyright terms: Public domain | W3C validator |