MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5b Structured version   Visualization version   GIF version

Theorem ellspsn5b 20923
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.)
Hypotheses
Ref Expression
ellspsn5b.v 𝑉 = (Base‘𝑊)
ellspsn5b.s 𝑆 = (LSubSp‘𝑊)
ellspsn5b.n 𝑁 = (LSpan‘𝑊)
ellspsn5b.w (𝜑𝑊 ∈ LMod)
ellspsn5b.a (𝜑𝑈𝑆)
ellspsn5b.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellspsn5b (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))

Proof of Theorem ellspsn5b
StepHypRef Expression
1 ellspsn5b.x . 2 (𝜑𝑋𝑉)
2 ellspsn5b.v . . 3 𝑉 = (Base‘𝑊)
3 ellspsn5b.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5b.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5b.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5b.a . . 3 (𝜑𝑈𝑆)
72, 3, 4, 5, 6ellspsn6 20922 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
81, 7mpbirand 707 1 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wss 3897  {csn 4571  cfv 6476  Basecbs 17115  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-lmod 20790  df-lss 20860  df-lsp 20900
This theorem is referenced by:  ellspsn5  20924  lspprid1  20925  lspsnss2  20933  lsmelpr  21020  lspsncmp  21048  lspsnne1  21049  lspsnne2  21050  lspsneq  21054  lspindpi  21064  islbs2  21086  lindsadd  37653  lindsenlbs  37655  lsatelbN  39045  lsmsat  39047  lsatfixedN  39048  l1cvpat  39093  dia2dimlem5  41107  dochsncom  41421  dihjat1lem  41467  dvh4dimlem  41482  lclkrlem2a  41546  lcfrlem6  41586  lcfrlem20  41601  lcfrlem26  41607  lcfrlem36  41617  mapdval2N  41669  mapdrvallem2  41684  mapdindp  41710  mapdh6aN  41774  lspindp5  41809  mapdh8ab  41816  mapdh8e  41823  hdmap1l6a  41848  hdmaprnlem3eN  41897  hdmapoc  41970
  Copyright terms: Public domain W3C validator