| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5b | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
| Ref | Expression |
|---|---|
| ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellspsn5b | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | ellspsn5b.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ellspsn5b.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5b.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5b.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5b.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3, 4, 5, 6 | ellspsn6 20876 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| 8 | 1, 7 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Basecbs 17155 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-lmod 20744 df-lss 20814 df-lsp 20854 |
| This theorem is referenced by: ellspsn5 20878 lspprid1 20879 lspsnss2 20887 lsmelpr 20974 lspsncmp 21002 lspsnne1 21003 lspsnne2 21004 lspsneq 21008 lspindpi 21018 islbs2 21040 lindsadd 37580 lindsenlbs 37582 lsatelbN 38972 lsmsat 38974 lsatfixedN 38975 l1cvpat 39020 dia2dimlem5 41035 dochsncom 41349 dihjat1lem 41395 dvh4dimlem 41410 lclkrlem2a 41474 lcfrlem6 41514 lcfrlem20 41529 lcfrlem26 41535 lcfrlem36 41545 mapdval2N 41597 mapdrvallem2 41612 mapdindp 41638 mapdh6aN 41702 lspindp5 41737 mapdh8ab 41744 mapdh8e 41751 hdmap1l6a 41776 hdmaprnlem3eN 41825 hdmapoc 41898 |
| Copyright terms: Public domain | W3C validator |