| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5b | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
| Ref | Expression |
|---|---|
| ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellspsn5b | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | ellspsn5b.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ellspsn5b.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5b.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5b.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5b.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3, 4, 5, 6 | ellspsn6 20916 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| 8 | 1, 7 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ‘cfv 6486 Basecbs 17139 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-lmod 20784 df-lss 20854 df-lsp 20894 |
| This theorem is referenced by: ellspsn5 20918 lspprid1 20919 lspsnss2 20927 lsmelpr 21014 lspsncmp 21042 lspsnne1 21043 lspsnne2 21044 lspsneq 21048 lspindpi 21058 islbs2 21080 lindsadd 37612 lindsenlbs 37614 lsatelbN 39004 lsmsat 39006 lsatfixedN 39007 l1cvpat 39052 dia2dimlem5 41067 dochsncom 41381 dihjat1lem 41427 dvh4dimlem 41442 lclkrlem2a 41506 lcfrlem6 41546 lcfrlem20 41561 lcfrlem26 41567 lcfrlem36 41577 mapdval2N 41629 mapdrvallem2 41644 mapdindp 41670 mapdh6aN 41734 lspindp5 41769 mapdh8ab 41776 mapdh8e 41783 hdmap1l6a 41808 hdmaprnlem3eN 41857 hdmapoc 41930 |
| Copyright terms: Public domain | W3C validator |