![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellspsn5b | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
ellspsn5b.v | ⊢ 𝑉 = (Base‘𝑊) |
ellspsn5b.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
ellspsn5b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
ellspsn5b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ellspsn5b.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
ellspsn5b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
ellspsn5b | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspsn5b.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | ellspsn5b.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ellspsn5b.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | ellspsn5b.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | ellspsn5b.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | ellspsn5b.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | ellspsn6 21015 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
8 | 1, 7 | mpbirand 706 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: ellspsn5 21017 lspprid1 21018 lspsnss2 21026 lsmelpr 21113 lspsncmp 21141 lspsnne1 21142 lspsnne2 21143 lspsneq 21147 lspindpi 21157 islbs2 21179 lindsadd 37573 lindsenlbs 37575 lsatelbN 38962 lsmsat 38964 lsatfixedN 38965 l1cvpat 39010 dia2dimlem5 41025 dochsncom 41339 dihjat1lem 41385 dvh4dimlem 41400 lclkrlem2a 41464 lcfrlem6 41504 lcfrlem20 41519 lcfrlem26 41525 lcfrlem36 41535 mapdval2N 41587 mapdrvallem2 41602 mapdindp 41628 mapdh6aN 41692 lspindp5 41727 mapdh8ab 41734 mapdh8e 41741 hdmap1l6a 41766 hdmaprnlem3eN 41815 hdmapoc 41888 |
Copyright terms: Public domain | W3C validator |