Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplvrpmlem Structured version   Visualization version   GIF version

Theorem mplvrpmlem 33573
Description: Lemma for mplvrpmga 33575 and others. (Contributed by Thierry Arnoux, 11-Jan-2026.)
Hypotheses
Ref Expression
mplvrpmlem.s 𝑆 = (SymGrp‘𝐼)
mplvrpmlem.p 𝑃 = (Base‘𝑆)
mplvrpmlem.i (𝜑𝐼𝑉)
mplvrpmlem.d (𝜑𝐷𝑃)
mplvrpmlem.1 (𝜑𝑋 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
Assertion
Ref Expression
mplvrpmlem (𝜑 → (𝑋𝐷) ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
Distinct variable groups:   𝐷,   ,𝐼   ,𝑋
Allowed substitution hints:   𝜑()   𝑃()   𝑆()   𝑉()

Proof of Theorem mplvrpmlem
StepHypRef Expression
1 breq1 5092 . 2 ( = (𝑋𝐷) → ( finSupp 0 ↔ (𝑋𝐷) finSupp 0))
2 nn0ex 12387 . . . 4 0 ∈ V
32a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
4 mplvrpmlem.i . . 3 (𝜑𝐼𝑉)
5 ssrab2 4027 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ⊆ (ℕ0m 𝐼)
6 mplvrpmlem.1 . . . . . 6 (𝜑𝑋 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
75, 6sselid 3927 . . . . 5 (𝜑𝑋 ∈ (ℕ0m 𝐼))
84, 3, 7elmaprd 32661 . . . 4 (𝜑𝑋:𝐼⟶ℕ0)
9 mplvrpmlem.d . . . . . 6 (𝜑𝐷𝑃)
10 mplvrpmlem.s . . . . . . 7 𝑆 = (SymGrp‘𝐼)
11 mplvrpmlem.p . . . . . . 7 𝑃 = (Base‘𝑆)
1210, 11symgbasf1o 19287 . . . . . 6 (𝐷𝑃𝐷:𝐼1-1-onto𝐼)
139, 12syl 17 . . . . 5 (𝜑𝐷:𝐼1-1-onto𝐼)
14 f1of 6763 . . . . 5 (𝐷:𝐼1-1-onto𝐼𝐷:𝐼𝐼)
1513, 14syl 17 . . . 4 (𝜑𝐷:𝐼𝐼)
168, 15fcod 6676 . . 3 (𝜑 → (𝑋𝐷):𝐼⟶ℕ0)
173, 4, 16elmapdd 8765 . 2 (𝜑 → (𝑋𝐷) ∈ (ℕ0m 𝐼))
18 breq1 5092 . . . . . 6 ( = 𝑋 → ( finSupp 0 ↔ 𝑋 finSupp 0))
1918elrab 3642 . . . . 5 (𝑋 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↔ (𝑋 ∈ (ℕ0m 𝐼) ∧ 𝑋 finSupp 0))
2019simprbi 496 . . . 4 (𝑋 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → 𝑋 finSupp 0)
216, 20syl 17 . . 3 (𝜑𝑋 finSupp 0)
22 f1of1 6762 . . . 4 (𝐷:𝐼1-1-onto𝐼𝐷:𝐼1-1𝐼)
2313, 22syl 17 . . 3 (𝜑𝐷:𝐼1-1𝐼)
24 0nn0 12396 . . . 4 0 ∈ ℕ0
2524a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
2621, 23, 25, 6fsuppco 9286 . 2 (𝜑 → (𝑋𝐷) finSupp 0)
271, 17, 26elrabd 3644 1 (𝜑 → (𝑋𝐷) ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  ccom 5618  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  0cc0 11006  0cn0 12381  Basecbs 17120  SymGrpcsymg 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18777  df-symg 19282
This theorem is referenced by:  mplvrpmrhm  33577  esplysply  33592
  Copyright terms: Public domain W3C validator