| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mplvrpmlem | Structured version Visualization version GIF version | ||
| Description: Lemma for mplvrpmga 33548 and others. (Contributed by Thierry Arnoux, 11-Jan-2026.) |
| Ref | Expression |
|---|---|
| mplvrpmlem.s | ⊢ 𝑆 = (SymGrp‘𝐼) |
| mplvrpmlem.p | ⊢ 𝑃 = (Base‘𝑆) |
| mplvrpmlem.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mplvrpmlem.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| mplvrpmlem.1 | ⊢ (𝜑 → 𝑋 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| Ref | Expression |
|---|---|
| mplvrpmlem | ⊢ (𝜑 → (𝑋 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . 2 ⊢ (ℎ = (𝑋 ∘ 𝐷) → (ℎ finSupp 0 ↔ (𝑋 ∘ 𝐷) finSupp 0)) | |
| 2 | nn0ex 12390 | . . . 4 ⊢ ℕ0 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ0 ∈ V) |
| 4 | mplvrpmlem.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | ssrab2 4031 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ⊆ (ℕ0 ↑m 𝐼) | |
| 6 | mplvrpmlem.1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) | |
| 7 | 5, 6 | sselid 3933 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (ℕ0 ↑m 𝐼)) |
| 8 | 4, 3, 7 | elmaprd 32623 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶ℕ0) |
| 9 | mplvrpmlem.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | mplvrpmlem.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝐼) | |
| 11 | mplvrpmlem.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑆) | |
| 12 | 10, 11 | symgbasf1o 19254 | . . . . . 6 ⊢ (𝐷 ∈ 𝑃 → 𝐷:𝐼–1-1-onto→𝐼) |
| 13 | 9, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷:𝐼–1-1-onto→𝐼) |
| 14 | f1of 6764 | . . . . 5 ⊢ (𝐷:𝐼–1-1-onto→𝐼 → 𝐷:𝐼⟶𝐼) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:𝐼⟶𝐼) |
| 16 | 8, 15 | fcod 6677 | . . 3 ⊢ (𝜑 → (𝑋 ∘ 𝐷):𝐼⟶ℕ0) |
| 17 | 3, 4, 16 | elmapdd 8768 | . 2 ⊢ (𝜑 → (𝑋 ∘ 𝐷) ∈ (ℕ0 ↑m 𝐼)) |
| 18 | breq1 5095 | . . . . . 6 ⊢ (ℎ = 𝑋 → (ℎ finSupp 0 ↔ 𝑋 finSupp 0)) | |
| 19 | 18 | elrab 3648 | . . . . 5 ⊢ (𝑋 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ↔ (𝑋 ∈ (ℕ0 ↑m 𝐼) ∧ 𝑋 finSupp 0)) |
| 20 | 19 | simprbi 496 | . . . 4 ⊢ (𝑋 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} → 𝑋 finSupp 0) |
| 21 | 6, 20 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 finSupp 0) |
| 22 | f1of1 6763 | . . . 4 ⊢ (𝐷:𝐼–1-1-onto→𝐼 → 𝐷:𝐼–1-1→𝐼) | |
| 23 | 13, 22 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷:𝐼–1-1→𝐼) |
| 24 | 0nn0 12399 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 26 | 21, 23, 25, 6 | fsuppco 9292 | . 2 ⊢ (𝜑 → (𝑋 ∘ 𝐷) finSupp 0) |
| 27 | 1, 17, 26 | elrabd 3650 | 1 ⊢ (𝜑 → (𝑋 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 class class class wbr 5092 ∘ ccom 5623 ⟶wf 6478 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 finSupp cfsupp 9251 0cc0 11009 ℕ0cn0 12384 Basecbs 17120 SymGrpcsymg 19248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-efmnd 18743 df-symg 19249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |