| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2729 |
. 2
⊢
(SymGrp‘𝐼) =
(SymGrp‘𝐼) |
| 2 | | eqid 2729 |
. 2
⊢
(Base‘(SymGrp‘𝐼)) = (Base‘(SymGrp‘𝐼)) |
| 3 | | eqid 2729 |
. 2
⊢
(Base‘(𝐼 mPoly
𝑅)) = (Base‘(𝐼 mPoly 𝑅)) |
| 4 | | esplyfv.d |
. 2
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 5 | | esplyfv.i |
. 2
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 6 | | esplyfv.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | | esplyfv.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (0...(♯‘𝐼))) |
| 8 | | elfznn0 13511 |
. . . 4
⊢ (𝐾 ∈
(0...(♯‘𝐼))
→ 𝐾 ∈
ℕ0) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 10 | 4, 5, 6, 9, 3 | esplympl 33556 |
. 2
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐼 mPoly 𝑅))) |
| 11 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 12 | | nn0ex 12378 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ℕ0 ∈
V) |
| 14 | 4 | ssrab3 4029 |
. . . . . . . . . . . 12
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 16 | 15 | sselda 3931 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ (ℕ0
↑m 𝐼)) |
| 17 | 11, 13, 16 | elmaprd 32613 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
| 18 | 17 | fdmd 6656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → dom 𝑥 = 𝐼) |
| 19 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑝 ∈ (Base‘(SymGrp‘𝐼))) |
| 20 | 1, 2 | symgbasf1o 19241 |
. . . . . . . . . 10
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝐼)) → 𝑝:𝐼–1-1-onto→𝐼) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑝:𝐼–1-1-onto→𝐼) |
| 22 | | f1ofo 6765 |
. . . . . . . . 9
⊢ (𝑝:𝐼–1-1-onto→𝐼 → 𝑝:𝐼–onto→𝐼) |
| 23 | | forn 6733 |
. . . . . . . . 9
⊢ (𝑝:𝐼–onto→𝐼 → ran 𝑝 = 𝐼) |
| 24 | 21, 22, 23 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ran 𝑝 = 𝐼) |
| 25 | 18, 24 | eqtr4d 2767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → dom 𝑥 = ran 𝑝) |
| 26 | | rncoeq 5917 |
. . . . . . 7
⊢ (dom
𝑥 = ran 𝑝 → ran (𝑥 ∘ 𝑝) = ran 𝑥) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ran (𝑥 ∘ 𝑝) = ran 𝑥) |
| 28 | 27 | sseq1d 3963 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (ran (𝑥 ∘ 𝑝) ⊆ {0, 1} ↔ ran 𝑥 ⊆ {0,
1})) |
| 29 | | f1ocnv 6770 |
. . . . . . . . 9
⊢ (𝑝:𝐼–1-1-onto→𝐼 → ◡𝑝:𝐼–1-1-onto→𝐼) |
| 30 | | f1of1 6757 |
. . . . . . . . 9
⊢ (◡𝑝:𝐼–1-1-onto→𝐼 → ◡𝑝:𝐼–1-1→𝐼) |
| 31 | 21, 29, 30 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ◡𝑝:𝐼–1-1→𝐼) |
| 32 | | cnvimass 6027 |
. . . . . . . . 9
⊢ (◡𝑥 “ (ℕ0 ∖ {0}))
⊆ dom 𝑥 |
| 33 | 32, 17 | fssdm 6665 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (◡𝑥 “ (ℕ0 ∖ {0}))
⊆ 𝐼) |
| 34 | 31, 33, 11 | hashimaf1 32748 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (♯‘(◡𝑝 “ (◡𝑥 “ (ℕ0 ∖ {0}))))
= (♯‘(◡𝑥 “ (ℕ0 ∖
{0})))) |
| 35 | | c0ex 11097 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 0 ∈ V) |
| 37 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) → 𝑝 ∈ (Base‘(SymGrp‘𝐼))) |
| 38 | | f1of 6758 |
. . . . . . . . . . . . 13
⊢ (𝑝:𝐼–1-1-onto→𝐼 → 𝑝:𝐼⟶𝐼) |
| 39 | 37, 20, 38 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) → 𝑝:𝐼⟶𝐼) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑝:𝐼⟶𝐼) |
| 41 | 17, 40 | fcod 6671 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (𝑥 ∘ 𝑝):𝐼⟶ℕ0) |
| 42 | | fsuppeq 8099 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ Fin ∧ 0 ∈ V)
→ ((𝑥 ∘ 𝑝):𝐼⟶ℕ0 → ((𝑥 ∘ 𝑝) supp 0) = (◡(𝑥 ∘ 𝑝) “ (ℕ0 ∖
{0})))) |
| 43 | 42 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ Fin ∧ 0 ∈ V)
∧ (𝑥 ∘ 𝑝):𝐼⟶ℕ0) → ((𝑥 ∘ 𝑝) supp 0) = (◡(𝑥 ∘ 𝑝) “ (ℕ0 ∖
{0}))) |
| 44 | 11, 36, 41, 43 | syl21anc 837 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ((𝑥 ∘ 𝑝) supp 0) = (◡(𝑥 ∘ 𝑝) “ (ℕ0 ∖
{0}))) |
| 45 | | cnvco 5822 |
. . . . . . . . . . 11
⊢ ◡(𝑥 ∘ 𝑝) = (◡𝑝 ∘ ◡𝑥) |
| 46 | 45 | imaeq1i 6002 |
. . . . . . . . . 10
⊢ (◡(𝑥 ∘ 𝑝) “ (ℕ0 ∖ {0}))
= ((◡𝑝 ∘ ◡𝑥) “ (ℕ0 ∖
{0})) |
| 47 | | imaco 6194 |
. . . . . . . . . 10
⊢ ((◡𝑝 ∘ ◡𝑥) “ (ℕ0 ∖ {0}))
= (◡𝑝 “ (◡𝑥 “ (ℕ0 ∖
{0}))) |
| 48 | 46, 47 | eqtri 2752 |
. . . . . . . . 9
⊢ (◡(𝑥 ∘ 𝑝) “ (ℕ0 ∖ {0}))
= (◡𝑝 “ (◡𝑥 “ (ℕ0 ∖
{0}))) |
| 49 | 44, 48 | eqtrdi 2780 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ((𝑥 ∘ 𝑝) supp 0) = (◡𝑝 “ (◡𝑥 “ (ℕ0 ∖
{0})))) |
| 50 | 49 | fveq2d 6820 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (♯‘((𝑥 ∘ 𝑝) supp 0)) = (♯‘(◡𝑝 “ (◡𝑥 “ (ℕ0 ∖
{0}))))) |
| 51 | | fsuppeq 8099 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ 0 ∈ V)
→ (𝑥:𝐼⟶ℕ0 → (𝑥 supp 0) = (◡𝑥 “ (ℕ0 ∖
{0})))) |
| 52 | 51 | imp 406 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ 0 ∈ V)
∧ 𝑥:𝐼⟶ℕ0) → (𝑥 supp 0) = (◡𝑥 “ (ℕ0 ∖
{0}))) |
| 53 | 11, 36, 17, 52 | syl21anc 837 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (𝑥 supp 0) = (◡𝑥 “ (ℕ0 ∖
{0}))) |
| 54 | 53 | fveq2d 6820 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (♯‘(𝑥 supp 0)) = (♯‘(◡𝑥 “ (ℕ0 ∖
{0})))) |
| 55 | 34, 50, 54 | 3eqtr4d 2774 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (♯‘((𝑥 ∘ 𝑝) supp 0)) = (♯‘(𝑥 supp 0))) |
| 56 | 55 | eqeq1d 2731 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ((♯‘((𝑥 ∘ 𝑝) supp 0)) = 𝐾 ↔ (♯‘(𝑥 supp 0)) = 𝐾)) |
| 57 | 28, 56 | anbi12d 632 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → ((ran (𝑥 ∘ 𝑝) ⊆ {0, 1} ∧ (♯‘((𝑥 ∘ 𝑝) supp 0)) = 𝐾) ↔ (ran 𝑥 ⊆ {0, 1} ∧ (♯‘(𝑥 supp 0)) = 𝐾))) |
| 58 | 57 | ifbid 4496 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → if((ran (𝑥 ∘ 𝑝) ⊆ {0, 1} ∧ (♯‘((𝑥 ∘ 𝑝) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) = if((ran 𝑥 ⊆ {0, 1} ∧ (♯‘(𝑥 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 59 | 6 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 60 | 7 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝐾 ∈ (0...(♯‘𝐼))) |
| 61 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 62 | 61, 4 | eleqtrdi 2838 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 63 | 1, 2, 11, 19, 62 | mplvrpmlem 33541 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (𝑥 ∘ 𝑝) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 64 | 63, 4 | eleqtrrdi 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (𝑥 ∘ 𝑝) ∈ 𝐷) |
| 65 | | eqid 2729 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 66 | | eqid 2729 |
. . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 67 | 4, 11, 59, 60, 64, 65, 66 | esplyfv 33559 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (((𝐼eSymPoly𝑅)‘𝐾)‘(𝑥 ∘ 𝑝)) = if((ran (𝑥 ∘ 𝑝) ⊆ {0, 1} ∧ (♯‘((𝑥 ∘ 𝑝) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 68 | 4, 11, 59, 60, 61, 65, 66 | esplyfv 33559 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑥) = if((ran 𝑥 ⊆ {0, 1} ∧ (♯‘(𝑥 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 69 | 58, 67, 68 | 3eqtr4d 2774 |
. 2
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘(SymGrp‘𝐼))) ∧ 𝑥 ∈ 𝐷) → (((𝐼eSymPoly𝑅)‘𝐾)‘(𝑥 ∘ 𝑝)) = (((𝐼eSymPoly𝑅)‘𝐾)‘𝑥)) |
| 70 | 1, 2, 3, 4, 5, 6, 10, 69 | issply 33552 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐼SymPoly𝑅)) |