| Step | Hyp | Ref
| Expression |
| 1 | | mplvrpmga.3 |
. . 3
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 2 | | mplvrpmmhm.w |
. . . 4
⊢ 𝑊 = (𝐼 mPoly 𝑅) |
| 3 | 2 | fveq2i 6825 |
. . 3
⊢
(Base‘𝑊) =
(Base‘(𝐼 mPoly 𝑅)) |
| 4 | 1, 3 | eqtr4i 2755 |
. 2
⊢ 𝑀 = (Base‘𝑊) |
| 5 | | eqid 2729 |
. 2
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 6 | | eqid 2729 |
. 2
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 7 | | mplvrpmga.5 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 8 | | mplvrpmmhm.1 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | 2, 7, 8 | mplringd 21930 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Ring) |
| 10 | 9 | ringgrpd 20127 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Grp) |
| 11 | 10 | grpmndd 18825 |
. 2
⊢ (𝜑 → 𝑊 ∈ Mnd) |
| 12 | | mplvrpmmhm.2 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 13 | | mplvrpmga.1 |
. . . . . . . . 9
⊢ 𝑆 = (SymGrp‘𝐼) |
| 14 | | mplvrpmga.2 |
. . . . . . . . 9
⊢ 𝑃 = (Base‘𝑆) |
| 15 | | mplvrpmga.4 |
. . . . . . . . 9
⊢ 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 16 | 13, 14, 1, 15, 7 | mplvrpmga 33548 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝑆 GrpAct 𝑀)) |
| 17 | 14 | gaf 19174 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑆 GrpAct 𝑀) → 𝐴:(𝑃 × 𝑀)⟶𝑀) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴:(𝑃 × 𝑀)⟶𝑀) |
| 19 | 18 | fovcld 7476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 20 | 19 | 3expa 1118 |
. . . . 5
⊢ (((𝜑 ∧ 𝐷 ∈ 𝑃) ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 21 | 20 | an32s 652 |
. . . 4
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑀) ∧ 𝐷 ∈ 𝑃) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 22 | 12, 21 | mpidan 689 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 23 | | mplvrpmmhm.f |
. . 3
⊢ 𝐹 = (𝑓 ∈ 𝑀 ↦ (𝐷𝐴𝑓)) |
| 24 | 22, 23 | fmptd 7048 |
. 2
⊢ (𝜑 → 𝐹:𝑀⟶𝑀) |
| 25 | | eqid 2729 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 26 | | eqid 2729 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| 27 | 26 | psrbasfsupp 33545 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 28 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑖 ∈ 𝑀) |
| 29 | 2, 25, 4, 27, 28 | mplelf 21905 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑖:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 31 | 30 | ffnd 6653 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 32 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑗 ∈ 𝑀) |
| 33 | 2, 25, 4, 27, 32 | mplelf 21905 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑗:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑗:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 35 | 34 | ffnd 6653 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑗 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 36 | | ovex 7382 |
. . . . . . . . . 10
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 37 | 36 | rabex 5278 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V |
| 38 | 37 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ∈ V) |
| 39 | | breq1 5095 |
. . . . . . . . 9
⊢ (ℎ = (𝑥 ∘ 𝐷) → (ℎ finSupp 0 ↔ (𝑥 ∘ 𝐷) finSupp 0)) |
| 40 | | nn0ex 12390 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 42 | 7 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 43 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 44 | 40 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 45 | | breq1 5095 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑥 → (ℎ finSupp 0 ↔ 𝑥 finSupp 0)) |
| 46 | 45 | elrab 3648 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↔
(𝑥 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑥 finSupp 0)) |
| 47 | 46 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
(𝑥 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑥 finSupp 0)) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑥 finSupp 0)) |
| 49 | 48 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈
(ℕ0 ↑m 𝐼)) |
| 50 | 43, 44, 49 | elmaprd 32623 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 51 | 50 | ad4ant14 752 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 52 | 13, 14 | symgbasf1o 19254 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ 𝑃 → 𝐷:𝐼–1-1-onto→𝐼) |
| 53 | 12, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷:𝐼–1-1-onto→𝐼) |
| 54 | | f1of 6764 |
. . . . . . . . . . . . 13
⊢ (𝐷:𝐼–1-1-onto→𝐼 → 𝐷:𝐼⟶𝐼) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷:𝐼⟶𝐼) |
| 56 | 55 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷:𝐼⟶𝐼) |
| 57 | 51, 56 | fcod 6677 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷):𝐼⟶ℕ0) |
| 58 | 41, 42, 57 | elmapdd 8768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) ∈ (ℕ0
↑m 𝐼)) |
| 59 | 48 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 finSupp
0) |
| 60 | 53 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷:𝐼–1-1-onto→𝐼) |
| 61 | | f1of1 6763 |
. . . . . . . . . . . 12
⊢ (𝐷:𝐼–1-1-onto→𝐼 → 𝐷:𝐼–1-1→𝐼) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷:𝐼–1-1→𝐼) |
| 63 | | 0nn0 12399 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
| 64 | 63 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℕ0) |
| 65 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 66 | 59, 62, 64, 65 | fsuppco 9292 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) finSupp 0) |
| 67 | 66 | ad4ant14 752 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) finSupp 0) |
| 68 | 39, 58, 67 | elrabd 3650 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 69 | | fnfvof 7630 |
. . . . . . . 8
⊢ (((𝑖 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∧
𝑗 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ∈ V ∧ (𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}))
→ ((𝑖
∘f (+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷)) = ((𝑖‘(𝑥 ∘ 𝐷))(+g‘𝑅)(𝑗‘(𝑥 ∘ 𝐷)))) |
| 70 | 31, 35, 38, 68, 69 | syl22anc 838 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷)) = ((𝑖‘(𝑥 ∘ 𝐷))(+g‘𝑅)(𝑗‘(𝑥 ∘ 𝐷)))) |
| 71 | | oveq2 7357 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑖 → (𝐷𝐴𝑓) = (𝐷𝐴𝑖)) |
| 72 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 73 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → 𝑓 = 𝑖) |
| 74 | | coeq2 5801 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝐷 → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 76 | 73, 75 | fveq12d 6829 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑖‘(𝑥 ∘ 𝐷))) |
| 77 | 76 | mpteq2dv 5186 |
. . . . . . . . . . . . 13
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = 𝑖)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 79 | 12 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐷 ∈ 𝑃) |
| 80 | 37 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 81 | 80 | mptexd 7160 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷))) ∈ V) |
| 82 | 72, 78, 79, 28, 81 | ovmpod 7501 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐷𝐴𝑖) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 83 | 71, 82 | sylan9eqr 2786 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑓 = 𝑖) → (𝐷𝐴𝑓) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 84 | 23, 83, 28, 81 | fvmptd2 6938 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑖) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 85 | | fvexd 6837 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑖‘(𝑥 ∘ 𝐷)) ∈ V) |
| 86 | 84, 85 | fvmpt2d 6943 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝐹‘𝑖)‘𝑥) = (𝑖‘(𝑥 ∘ 𝐷))) |
| 87 | | oveq2 7357 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑗 → (𝐷𝐴𝑓) = (𝐷𝐴𝑗)) |
| 88 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → 𝑓 = 𝑗) |
| 89 | 74 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 90 | 88, 89 | fveq12d 6829 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑗‘(𝑥 ∘ 𝐷))) |
| 91 | 90 | mpteq2dv 5186 |
. . . . . . . . . . . . 13
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = 𝑗)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 93 | 80 | mptexd 7160 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷))) ∈ V) |
| 94 | 72, 92, 79, 32, 93 | ovmpod 7501 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐷𝐴𝑗) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 95 | 87, 94 | sylan9eqr 2786 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑓 = 𝑗) → (𝐷𝐴𝑓) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 96 | 23, 95, 32, 93 | fvmptd2 6938 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑗) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 97 | | fvexd 6837 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑗‘(𝑥 ∘ 𝐷)) ∈ V) |
| 98 | 96, 97 | fvmpt2d 6943 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝐹‘𝑗)‘𝑥) = (𝑗‘(𝑥 ∘ 𝐷))) |
| 99 | 86, 98 | oveq12d 7367 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(((𝐹‘𝑖)‘𝑥)(+g‘𝑅)((𝐹‘𝑗)‘𝑥)) = ((𝑖‘(𝑥 ∘ 𝐷))(+g‘𝑅)(𝑗‘(𝑥 ∘ 𝐷)))) |
| 100 | 70, 99 | eqtr4d 2767 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷)) = (((𝐹‘𝑖)‘𝑥)(+g‘𝑅)((𝐹‘𝑗)‘𝑥))) |
| 101 | 100 | mpteq2dva 5185 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(((𝐹‘𝑖)‘𝑥)(+g‘𝑅)((𝐹‘𝑗)‘𝑥)))) |
| 102 | 24 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐹:𝑀⟶𝑀) |
| 103 | 102, 28 | ffvelcdmd 7019 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑖) ∈ 𝑀) |
| 104 | 2, 25, 4, 27, 103 | mplelf 21905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑖):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 105 | 104 | ffnd 6653 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑖) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 106 | 102, 32 | ffvelcdmd 7019 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑗) ∈ 𝑀) |
| 107 | 2, 25, 4, 27, 106 | mplelf 21905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑗):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 108 | 107 | ffnd 6653 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑗) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 109 | 80, 105, 108 | offvalfv 7635 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → ((𝐹‘𝑖) ∘f
(+g‘𝑅)(𝐹‘𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(((𝐹‘𝑖)‘𝑥)(+g‘𝑅)((𝐹‘𝑗)‘𝑥)))) |
| 110 | 101, 109 | eqtr4d 2767 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷))) = ((𝐹‘𝑖) ∘f
(+g‘𝑅)(𝐹‘𝑗))) |
| 111 | | oveq2 7357 |
. . . . . . 7
⊢ (𝑓 = (𝑖(+g‘𝑊)𝑗) → (𝐷𝐴𝑓) = (𝐷𝐴(𝑖(+g‘𝑊)𝑗))) |
| 112 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗)) → 𝑓 = (𝑖(+g‘𝑊)𝑗)) |
| 113 | 74 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗)) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 114 | 112, 113 | fveq12d 6829 |
. . . . . . . . . 10
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗)) → (𝑓‘(𝑥 ∘ 𝑑)) = ((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷))) |
| 115 | 114 | mpteq2dv 5186 |
. . . . . . . . 9
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 116 | 115 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 117 | 10 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑊 ∈ Grp) |
| 118 | 4, 5, 117, 28, 32 | grpcld 18826 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑖(+g‘𝑊)𝑗) ∈ 𝑀) |
| 119 | 80 | mptexd 7160 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷))) ∈ V) |
| 120 | 72, 116, 79, 118, 119 | ovmpod 7501 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐷𝐴(𝑖(+g‘𝑊)𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 121 | 111, 120 | sylan9eqr 2786 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑓 = (𝑖(+g‘𝑊)𝑗)) → (𝐷𝐴𝑓) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 122 | 23, 121, 118, 119 | fvmptd2 6938 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 123 | | eqid 2729 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 124 | 2, 4, 123, 5, 28, 32 | mpladd 21916 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑖(+g‘𝑊)𝑗) = (𝑖 ∘f
(+g‘𝑅)𝑗)) |
| 125 | 124 | fveq1d 6824 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → ((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷)) = ((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷))) |
| 126 | 125 | mpteq2dv 5186 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖(+g‘𝑊)𝑗)‘(𝑥 ∘ 𝐷))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 127 | 122, 126 | eqtrd 2764 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((𝑖 ∘f
(+g‘𝑅)𝑗)‘(𝑥 ∘ 𝐷)))) |
| 128 | 2, 4, 123, 5, 103, 106 | mpladd 21916 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗)) = ((𝐹‘𝑖) ∘f
(+g‘𝑅)(𝐹‘𝑗))) |
| 129 | 110, 127,
128 | 3eqtr4d 2774 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗))) |
| 130 | 129 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗))) |
| 131 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 = (0g‘𝑊)) → 𝑓 = (0g‘𝑊)) |
| 132 | 131 | oveq2d 7365 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 = (0g‘𝑊)) → (𝐷𝐴𝑓) = (𝐷𝐴(0g‘𝑊))) |
| 133 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 134 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑓 =
(0g‘𝑊)) |
| 135 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 136 | 8 | ringgrpd 20127 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 137 | 2, 27, 135, 6, 7, 136 | mpl0 21913 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑊) = ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ×
{(0g‘𝑅)})) |
| 138 | 137 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(0g‘𝑊) =
({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})) |
| 139 | 134, 138 | eqtrd 2764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑓 = ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ×
{(0g‘𝑅)})) |
| 140 | 74 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 141 | 140 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 142 | 139, 141 | fveq12d 6829 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷))) |
| 143 | 142 | mpteq2dva 5185 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷)))) |
| 144 | 55 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷:𝐼⟶𝐼) |
| 145 | 50, 144 | fcod 6677 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷):𝐼⟶ℕ0) |
| 146 | 44, 43, 145 | elmapdd 8768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) ∈ (ℕ0
↑m 𝐼)) |
| 147 | 39, 146, 66 | elrabd 3650 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 148 | | fvex 6835 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) ∈ V |
| 149 | 148 | fvconst2 7140 |
. . . . . . . . . . 11
⊢ ((𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷)) = (0g‘𝑅)) |
| 150 | 147, 149 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷)) = (0g‘𝑅)) |
| 151 | 150 | mpteq2dva 5185 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(0g‘𝑅))) |
| 152 | | fconstmpt 5681 |
. . . . . . . . . 10
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ×
{(0g‘𝑅)})
= (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(0g‘𝑅)) |
| 153 | 137, 152 | eqtrdi 2780 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑊) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(0g‘𝑅))) |
| 154 | 151, 153 | eqtr4d 2767 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷))) = (0g‘𝑊)) |
| 155 | 154 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(({ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ×
{(0g‘𝑅)})‘(𝑥 ∘ 𝐷))) = (0g‘𝑊)) |
| 156 | 143, 155 | eqtrd 2764 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (0g‘𝑊))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (0g‘𝑊)) |
| 157 | 4, 6 | grpidcl 18844 |
. . . . . . 7
⊢ (𝑊 ∈ Grp →
(0g‘𝑊)
∈ 𝑀) |
| 158 | 10, 157 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑊) ∈ 𝑀) |
| 159 | 133, 156,
12, 158, 158 | ovmpod 7501 |
. . . . 5
⊢ (𝜑 → (𝐷𝐴(0g‘𝑊)) = (0g‘𝑊)) |
| 160 | 159 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 = (0g‘𝑊)) → (𝐷𝐴(0g‘𝑊)) = (0g‘𝑊)) |
| 161 | 132, 160 | eqtrd 2764 |
. . 3
⊢ ((𝜑 ∧ 𝑓 = (0g‘𝑊)) → (𝐷𝐴𝑓) = (0g‘𝑊)) |
| 162 | 23, 161, 158, 158 | fvmptd2 6938 |
. 2
⊢ (𝜑 → (𝐹‘(0g‘𝑊)) = (0g‘𝑊)) |
| 163 | 4, 4, 5, 5, 6, 6, 11, 11, 24, 130, 162 | ismhmd 18660 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑊 MndHom 𝑊)) |