| Step | Hyp | Ref
| Expression |
| 1 | | mplvrpmga.5 |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 2 | | mplvrpmga.1 |
. . . 4
⊢ 𝑆 = (SymGrp‘𝐼) |
| 3 | 2 | symggrp 19298 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝑆 ∈ Grp) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → 𝑆 ∈ Grp) |
| 5 | | mplvrpmga.3 |
. . . 4
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 6 | 5 | fvexi 6840 |
. . 3
⊢ 𝑀 ∈ V |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 𝑀 ∈ V) |
| 8 | | fvexd 6841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (Base‘𝑅) ∈ V) |
| 9 | | ovex 7386 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 10 | 9 | rabex 5281 |
. . . . . . 7
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 12 | | eqid 2729 |
. . . . . . . . 9
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 13 | | eqid 2729 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 14 | | eqid 2729 |
. . . . . . . . . 10
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| 15 | 14 | psrbasfsupp 33563 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 16 | | xp2nd 7964 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (𝑃 × 𝑀) → (2nd ‘𝑐) ∈ 𝑀) |
| 17 | 16 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(2nd ‘𝑐)
∈ 𝑀) |
| 18 | 12, 13, 5, 15, 17 | mplelf 21924 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(2nd ‘𝑐):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 19 | | breq1 5098 |
. . . . . . . . 9
⊢ (ℎ = (𝑥 ∘ (1st ‘𝑐)) → (ℎ finSupp 0 ↔ (𝑥 ∘ (1st ‘𝑐)) finSupp 0)) |
| 20 | | nn0ex 12409 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 21 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 22 | 1 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 23 | | ssrab2 4033 |
. . . . . . . . . . . . . 14
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼) |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼)) |
| 25 | 24 | sselda 3937 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈
(ℕ0 ↑m 𝐼)) |
| 26 | 22, 21, 25 | elmaprd 32641 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 27 | | xp1st 7963 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (𝑃 × 𝑀) → (1st ‘𝑐) ∈ 𝑃) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(1st ‘𝑐)
∈ 𝑃) |
| 29 | | mplvrpmga.2 |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Base‘𝑆) |
| 30 | 2, 29 | symgbasf 19274 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑐) ∈ 𝑃 → (1st ‘𝑐):𝐼⟶𝐼) |
| 31 | 28, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(1st ‘𝑐):𝐼⟶𝐼) |
| 32 | 26, 31 | fcod 6681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ (1st
‘𝑐)):𝐼⟶ℕ0) |
| 33 | 21, 22, 32 | elmapdd 8775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ (1st
‘𝑐)) ∈
(ℕ0 ↑m 𝐼)) |
| 34 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 35 | | breq1 5098 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑥 → (ℎ finSupp 0 ↔ 𝑥 finSupp 0)) |
| 36 | 35 | elrab 3650 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↔
(𝑥 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑥 finSupp 0)) |
| 37 | 34, 36 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑥 finSupp 0)) |
| 38 | 37 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 finSupp
0) |
| 39 | 2, 29 | symgbasf1o 19273 |
. . . . . . . . . . 11
⊢
((1st ‘𝑐) ∈ 𝑃 → (1st ‘𝑐):𝐼–1-1-onto→𝐼) |
| 40 | | f1of1 6767 |
. . . . . . . . . . 11
⊢
((1st ‘𝑐):𝐼–1-1-onto→𝐼 → (1st
‘𝑐):𝐼–1-1→𝐼) |
| 41 | 28, 39, 40 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(1st ‘𝑐):𝐼–1-1→𝐼) |
| 42 | | 0nn0 12418 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℕ0) |
| 44 | 38, 41, 43, 34 | fsuppco 9311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ (1st
‘𝑐)) finSupp
0) |
| 45 | 19, 33, 44 | elrabd 3652 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ (1st
‘𝑐)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 46 | 18, 45 | ffvelcdmd 7023 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐))) ∈ (Base‘𝑅)) |
| 47 | 46 | fmpttd 7053 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 48 | 8, 11, 47 | elmapdd 8775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
| 49 | | eqid 2729 |
. . . . . . 7
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
| 50 | | eqid 2729 |
. . . . . . 7
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
| 51 | 49, 13, 15, 50, 1 | psrbas 21859 |
. . . . . 6
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
| 52 | 51 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
| 53 | 48, 52 | eleqtrrd 2831 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 54 | | coeq1 5804 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∘ (1st ‘𝑐)) = (𝑦 ∘ (1st ‘𝑐))) |
| 55 | 54 | fveq2d 6830 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐))) = ((2nd
‘𝑐)‘(𝑦 ∘ (1st
‘𝑐)))) |
| 56 | 55 | cbvmptv 5199 |
. . . . 5
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ (1st ‘𝑐)))) |
| 57 | | fveq1 6825 |
. . . . . . . 8
⊢ (𝑔 = (2nd ‘𝑐) → (𝑔‘(𝑦 ∘ 𝑞)) = ((2nd ‘𝑐)‘(𝑦 ∘ 𝑞))) |
| 58 | 57 | mpteq2dv 5189 |
. . . . . . 7
⊢ (𝑔 = (2nd ‘𝑐) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ 𝑞)))) |
| 59 | 58 | breq1d 5105 |
. . . . . 6
⊢ (𝑔 = (2nd ‘𝑐) → ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅) ↔ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅))) |
| 60 | | coeq2 5805 |
. . . . . . . . 9
⊢ (𝑞 = (1st ‘𝑐) → (𝑦 ∘ 𝑞) = (𝑦 ∘ (1st ‘𝑐))) |
| 61 | 60 | fveq2d 6830 |
. . . . . . . 8
⊢ (𝑞 = (1st ‘𝑐) → ((2nd
‘𝑐)‘(𝑦 ∘ 𝑞)) = ((2nd ‘𝑐)‘(𝑦 ∘ (1st ‘𝑐)))) |
| 62 | 61 | mpteq2dv 5189 |
. . . . . . 7
⊢ (𝑞 = (1st ‘𝑐) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ 𝑞))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ (1st ‘𝑐))))) |
| 63 | 62 | breq1d 5105 |
. . . . . 6
⊢ (𝑞 = (1st ‘𝑐) → ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅) ↔ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ (1st ‘𝑐)))) finSupp
(0g‘𝑅))) |
| 64 | | mplvrpmga.4 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 66 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝑞 ∧ 𝑓 = 𝑔) → 𝑓 = 𝑔) |
| 67 | | coeq2 5805 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑞 → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑞)) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝑞 ∧ 𝑓 = 𝑔) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑞)) |
| 69 | 66, 68 | fveq12d 6833 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 = 𝑞 ∧ 𝑓 = 𝑔) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑔‘(𝑥 ∘ 𝑞))) |
| 70 | 69 | mpteq2dv 5189 |
. . . . . . . . . . . . 13
⊢ ((𝑑 = 𝑞 ∧ 𝑓 = 𝑔) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞)))) |
| 71 | 70 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) ∧ (𝑑 = 𝑞 ∧ 𝑓 = 𝑔)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞)))) |
| 72 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → 𝑞 ∈ 𝑃) |
| 73 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → 𝑔 ∈ 𝑀) |
| 74 | 10 | mptex 7163 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞))) ∈ V |
| 75 | 74 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞))) ∈ V) |
| 76 | 65, 71, 72, 73, 75 | ovmpod 7505 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → (𝑞𝐴𝑔) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞)))) |
| 77 | | coeq1 5804 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∘ 𝑞) = (𝑦 ∘ 𝑞)) |
| 78 | 77 | fveq2d 6830 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑔‘(𝑥 ∘ 𝑞)) = (𝑔‘(𝑦 ∘ 𝑞))) |
| 79 | 78 | cbvmptv 5199 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ 𝑞))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) |
| 80 | 76, 79 | eqtrdi 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → (𝑞𝐴𝑔) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) |
| 81 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → 𝐼 ∈ 𝑉) |
| 82 | | eqid 2729 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 83 | 2, 29, 5, 64, 81, 82, 73, 72 | mplvrpmfgalem 33564 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → (𝑞𝐴𝑔) finSupp (0g‘𝑅)) |
| 84 | 80, 83 | eqbrtrrd 5119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅)) |
| 85 | 84 | anasss 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑀 ∧ 𝑞 ∈ 𝑃)) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅)) |
| 86 | 85 | ralrimivva 3172 |
. . . . . . 7
⊢ (𝜑 → ∀𝑔 ∈ 𝑀 ∀𝑞 ∈ 𝑃 (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅)) |
| 87 | 86 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → ∀𝑔 ∈ 𝑀 ∀𝑞 ∈ 𝑃 (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅)) |
| 88 | 16 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (2nd ‘𝑐) ∈ 𝑀) |
| 89 | 27 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (1st ‘𝑐) ∈ 𝑃) |
| 90 | 59, 63, 87, 88, 89 | rspc2dv 3594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑦 ∘ (1st ‘𝑐)))) finSupp
(0g‘𝑅)) |
| 91 | 56, 90 | eqbrtrid 5130 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) finSupp
(0g‘𝑅)) |
| 92 | 12, 49, 50, 82, 5 | mplelbas 21917 |
. . . 4
⊢ ((𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) ∈ 𝑀 ↔ ((𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) finSupp
(0g‘𝑅))) |
| 93 | 53, 91, 92 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑃 × 𝑀)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) ∈ 𝑀) |
| 94 | | vex 3442 |
. . . . . . . 8
⊢ 𝑑 ∈ V |
| 95 | | vex 3442 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 96 | 94, 95 | op2ndd 7942 |
. . . . . . 7
⊢ (𝑐 = 〈𝑑, 𝑓〉 → (2nd ‘𝑐) = 𝑓) |
| 97 | 94, 95 | op1std 7941 |
. . . . . . . 8
⊢ (𝑐 = 〈𝑑, 𝑓〉 → (1st ‘𝑐) = 𝑑) |
| 98 | 97 | coeq2d 5809 |
. . . . . . 7
⊢ (𝑐 = 〈𝑑, 𝑓〉 → (𝑥 ∘ (1st ‘𝑐)) = (𝑥 ∘ 𝑑)) |
| 99 | 96, 98 | fveq12d 6833 |
. . . . . 6
⊢ (𝑐 = 〈𝑑, 𝑓〉 → ((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐))) = (𝑓‘(𝑥 ∘ 𝑑))) |
| 100 | 99 | mpteq2dv 5189 |
. . . . 5
⊢ (𝑐 = 〈𝑑, 𝑓〉 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐)))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 101 | 100 | mpompt 7467 |
. . . 4
⊢ (𝑐 ∈ (𝑃 × 𝑀) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐))))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 102 | 64, 101 | eqtr4i 2755 |
. . 3
⊢ 𝐴 = (𝑐 ∈ (𝑃 × 𝑀) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((2nd ‘𝑐)‘(𝑥 ∘ (1st ‘𝑐))))) |
| 103 | 93, 102 | fmptd 7052 |
. 2
⊢ (𝜑 → 𝐴:(𝑃 × 𝑀)⟶𝑀) |
| 104 | 2 | symgid 19299 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → ( I ↾ 𝐼) = (0g‘𝑆)) |
| 105 | 1, 104 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ( I ↾ 𝐼) = (0g‘𝑆)) |
| 106 | 105 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → ( I ↾ 𝐼) = (0g‘𝑆)) |
| 107 | 106 | oveq1d 7368 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → (( I ↾ 𝐼)𝐴𝑔) = ((0g‘𝑆)𝐴𝑔)) |
| 108 | 64 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 109 | 1 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 110 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 111 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼)) |
| 112 | 111 | sselda 3937 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈
(ℕ0 ↑m 𝐼)) |
| 113 | 109, 110,
112 | elmaprd 32641 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 114 | | fcoi1 6702 |
. . . . . . . . . . 11
⊢ (𝑥:𝐼⟶ℕ0 → (𝑥 ∘ ( I ↾ 𝐼)) = 𝑥) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ ( I ↾
𝐼)) = 𝑥) |
| 116 | 115 | fveq2d 6830 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑔‘(𝑥 ∘ ( I ↾ 𝐼))) = (𝑔‘𝑥)) |
| 117 | 116 | mpteq2dva 5188 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ ( I ↾ 𝐼)))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘𝑥))) |
| 118 | 117 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ (𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ ( I ↾ 𝐼)))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘𝑥))) |
| 119 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔) → 𝑓 = 𝑔) |
| 120 | | coeq2 5805 |
. . . . . . . . . . 11
⊢ (𝑑 = ( I ↾ 𝐼) → (𝑥 ∘ 𝑑) = (𝑥 ∘ ( I ↾ 𝐼))) |
| 121 | 120 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔) → (𝑥 ∘ 𝑑) = (𝑥 ∘ ( I ↾ 𝐼))) |
| 122 | 119, 121 | fveq12d 6833 |
. . . . . . . . 9
⊢ ((𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑔‘(𝑥 ∘ ( I ↾ 𝐼)))) |
| 123 | 122 | mpteq2dv 5189 |
. . . . . . . 8
⊢ ((𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ ( I ↾ 𝐼))))) |
| 124 | 123 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ (𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ ( I ↾ 𝐼))))) |
| 125 | 12, 49, 50, 82, 5 | mplelbas 21917 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ 𝑀 ↔ (𝑔 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑔 finSupp (0g‘𝑅))) |
| 126 | 125 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ 𝑀 → 𝑔 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 127 | 49, 13, 15, 50, 126 | psrelbas 21860 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝑀 → 𝑔:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 128 | 127 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑑 = ( I ↾ 𝐼)) ∧ 𝑓 = 𝑔) → 𝑔:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 129 | 128 | feqmptd 6895 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑑 = ( I ↾ 𝐼)) ∧ 𝑓 = 𝑔) → 𝑔 = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘𝑥))) |
| 130 | 129 | anasss 466 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ (𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔)) → 𝑔 = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘𝑥))) |
| 131 | 118, 124,
130 | 3eqtr4d 2774 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ (𝑑 = ( I ↾ 𝐼) ∧ 𝑓 = 𝑔)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = 𝑔) |
| 132 | | eqid 2729 |
. . . . . . . . . 10
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 133 | 29, 132 | grpidcl 18863 |
. . . . . . . . 9
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝑃) |
| 134 | 1, 3, 133 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑆) ∈ 𝑃) |
| 135 | 105, 134 | eqeltrd 2828 |
. . . . . . 7
⊢ (𝜑 → ( I ↾ 𝐼) ∈ 𝑃) |
| 136 | 135 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → ( I ↾ 𝐼) ∈ 𝑃) |
| 137 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → 𝑔 ∈ 𝑀) |
| 138 | 108, 131,
136, 137, 137 | ovmpod 7505 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → (( I ↾ 𝐼)𝐴𝑔) = 𝑔) |
| 139 | 107, 138 | eqtr3d 2766 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → ((0g‘𝑆)𝐴𝑔) = 𝑔) |
| 140 | | eqid 2729 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 141 | 2, 29, 140 | symgov 19282 |
. . . . . . . . 9
⊢ ((𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑃) → (𝑝(+g‘𝑆)𝑞) = (𝑝 ∘ 𝑞)) |
| 142 | 141 | adantll 714 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝(+g‘𝑆)𝑞) = (𝑝 ∘ 𝑞)) |
| 143 | 142 | oveq1d 7368 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = ((𝑝 ∘ 𝑞)𝐴𝑔)) |
| 144 | | coass 6218 |
. . . . . . . . . . 11
⊢ ((𝑥 ∘ 𝑝) ∘ 𝑞) = (𝑥 ∘ (𝑝 ∘ 𝑞)) |
| 145 | 144 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝑥 ∘ 𝑝) ∘ 𝑞) = (𝑥 ∘ (𝑝 ∘ 𝑞))) |
| 146 | 145 | fveq2d 6830 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)) = (𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞)))) |
| 147 | 146 | mpteq2dva 5188 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞))))) |
| 148 | 80 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑞𝐴𝑔) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) |
| 149 | 148 | oveq2d 7369 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝𝐴(𝑞𝐴𝑔)) = (𝑝𝐴(𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))))) |
| 150 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 151 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑑 = 𝑝) |
| 152 | 151 | coeq2d 5809 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑝)) |
| 153 | 152 | fveq2d 6830 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = (𝑓‘(𝑥 ∘ 𝑝))) |
| 154 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) |
| 155 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 = (𝑥 ∘ 𝑝)) → 𝑦 = (𝑥 ∘ 𝑝)) |
| 156 | 155 | coeq1d 5808 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 = (𝑥 ∘ 𝑝)) → (𝑦 ∘ 𝑞) = ((𝑥 ∘ 𝑝) ∘ 𝑞)) |
| 157 | 156 | fveq2d 6830 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 = (𝑥 ∘ 𝑝)) → (𝑔‘(𝑦 ∘ 𝑞)) = (𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞))) |
| 158 | | breq1 5098 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑥 ∘ 𝑝) → (ℎ finSupp 0 ↔ (𝑥 ∘ 𝑝) finSupp 0)) |
| 159 | 20 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 160 | 1 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝐼 ∈ 𝑉) |
| 161 | 160 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 162 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼)) |
| 163 | 162 | sselda 3937 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈
(ℕ0 ↑m 𝐼)) |
| 164 | 161, 159,
163 | elmaprd 32641 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 165 | 2, 29 | symgbasf 19274 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ 𝑃 → 𝑝:𝐼⟶𝐼) |
| 166 | 165 | ad5antlr 735 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑝:𝐼⟶𝐼) |
| 167 | 164, 166 | fcod 6681 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑝):𝐼⟶ℕ0) |
| 168 | 159, 161,
167 | elmapdd 8775 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑝) ∈ (ℕ0
↑m 𝐼)) |
| 169 | 36 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
𝑥 finSupp
0) |
| 170 | 169 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 finSupp
0) |
| 171 | 2, 29 | symgbasf1o 19273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ 𝑃 → 𝑝:𝐼–1-1-onto→𝐼) |
| 172 | | f1of1 6767 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝:𝐼–1-1-onto→𝐼 → 𝑝:𝐼–1-1→𝐼) |
| 173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ 𝑃 → 𝑝:𝐼–1-1→𝐼) |
| 174 | 173 | ad5antlr 735 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑝:𝐼–1-1→𝐼) |
| 175 | 42 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℕ0) |
| 176 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 177 | 170, 174,
175, 176 | fsuppco 9311 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑝) finSupp 0) |
| 178 | 158, 168,
177 | elrabd 3652 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑝) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 179 | | fvexd 6841 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)) ∈ V) |
| 180 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) |
| 181 | | nfmpt1 5194 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦(𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) |
| 182 | 181 | nfeq2 2909 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) |
| 183 | 180, 182 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) |
| 184 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 185 | 183, 184 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 186 | | nfcv 2891 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑥 ∘ 𝑝) |
| 187 | | nfcv 2891 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)) |
| 188 | 154, 157,
178, 179, 185, 186, 187 | fvmptdf 6940 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑝)) = (𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞))) |
| 189 | 153, 188 | eqtrd 2764 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = (𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞))) |
| 190 | 189 | mpteq2dva 5188 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑑 = 𝑝) ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)))) |
| 191 | 190 | anasss 466 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ (𝑑 = 𝑝 ∧ 𝑓 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)))) |
| 192 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
| 193 | | fvexd 6841 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (Base‘𝑅) ∈ V) |
| 194 | 10 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 195 | 137 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑔 ∈ 𝑀) |
| 196 | 12, 13, 5, 15, 195 | mplelf 21924 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑔:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 197 | | breq1 5098 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑦 ∘ 𝑞) → (ℎ finSupp 0 ↔ (𝑦 ∘ 𝑞) finSupp 0)) |
| 198 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 199 | 160 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 200 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼)) |
| 201 | 200 | sselda 3937 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑦 ∈
(ℕ0 ↑m 𝐼)) |
| 202 | 199, 198,
201 | elmaprd 32641 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑦:𝐼⟶ℕ0) |
| 203 | 2, 29 | symgbasf 19274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 ∈ 𝑃 → 𝑞:𝐼⟶𝐼) |
| 204 | 203 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑞:𝐼⟶𝐼) |
| 205 | 202, 204 | fcod 6681 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑦 ∘ 𝑞):𝐼⟶ℕ0) |
| 206 | 198, 199,
205 | elmapdd 8775 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑦 ∘ 𝑞) ∈ (ℕ0
↑m 𝐼)) |
| 207 | | breq1 5098 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑦 → (ℎ finSupp 0 ↔ 𝑦 finSupp 0)) |
| 208 | 207 | elrab 3650 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↔
(𝑦 ∈
(ℕ0 ↑m 𝐼) ∧ 𝑦 finSupp 0)) |
| 209 | 208 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
𝑦 finSupp
0) |
| 210 | 209 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑦 finSupp
0) |
| 211 | 2, 29 | symgbasf1o 19273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 ∈ 𝑃 → 𝑞:𝐼–1-1-onto→𝐼) |
| 212 | 211 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑞:𝐼–1-1-onto→𝐼) |
| 213 | | f1of1 6767 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞:𝐼–1-1-onto→𝐼 → 𝑞:𝐼–1-1→𝐼) |
| 214 | 212, 213 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑞:𝐼–1-1→𝐼) |
| 215 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℕ0) |
| 216 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 217 | 210, 214,
215, 216 | fsuppco 9311 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑦 ∘ 𝑞) finSupp 0) |
| 218 | 197, 206,
217 | elrabd 3652 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑦 ∘ 𝑞) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 219 | 196, 218 | ffvelcdmd 7023 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑔‘(𝑦 ∘ 𝑞)) ∈ (Base‘𝑅)) |
| 220 | 219 | fmpttd 7053 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 221 | 193, 194,
220 | elmapdd 8775 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
| 222 | 51 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
| 223 | 221, 222 | eleqtrrd 2831 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 224 | 84 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅)) |
| 225 | 12, 49, 50, 82, 5 | mplelbas 21917 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) ∈ 𝑀 ↔ ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) finSupp (0g‘𝑅))) |
| 226 | 223, 224,
225 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞))) ∈ 𝑀) |
| 227 | 194 | mptexd 7164 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞))) ∈ V) |
| 228 | 150, 191,
192, 226, 227 | ovmpod 7505 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝𝐴(𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑦 ∘ 𝑞)))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)))) |
| 229 | 149, 228 | eqtrd 2764 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝𝐴(𝑞𝐴𝑔)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘((𝑥 ∘ 𝑝) ∘ 𝑞)))) |
| 230 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑑 = (𝑝 ∘ 𝑞) ∧ 𝑓 = 𝑔) → 𝑓 = 𝑔) |
| 231 | | coeq2 5805 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (𝑝 ∘ 𝑞) → (𝑥 ∘ 𝑑) = (𝑥 ∘ (𝑝 ∘ 𝑞))) |
| 232 | 231 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑑 = (𝑝 ∘ 𝑞) ∧ 𝑓 = 𝑔) → (𝑥 ∘ 𝑑) = (𝑥 ∘ (𝑝 ∘ 𝑞))) |
| 233 | 230, 232 | fveq12d 6833 |
. . . . . . . . . . 11
⊢ ((𝑑 = (𝑝 ∘ 𝑞) ∧ 𝑓 = 𝑔) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞)))) |
| 234 | 233 | mpteq2dv 5189 |
. . . . . . . . . 10
⊢ ((𝑑 = (𝑝 ∘ 𝑞) ∧ 𝑓 = 𝑔) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞))))) |
| 235 | 234 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) ∧ (𝑑 = (𝑝 ∘ 𝑞) ∧ 𝑓 = 𝑔)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞))))) |
| 236 | 160, 3 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝑆 ∈ Grp) |
| 237 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝑞 ∈ 𝑃) |
| 238 | 29, 140, 236, 192, 237 | grpcld 18845 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝(+g‘𝑆)𝑞) ∈ 𝑃) |
| 239 | 142, 238 | eqeltrrd 2829 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑝 ∘ 𝑞) ∈ 𝑃) |
| 240 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → 𝑔 ∈ 𝑀) |
| 241 | 194 | mptexd 7164 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞)))) ∈ V) |
| 242 | 150, 235,
239, 240, 241 | ovmpod 7505 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → ((𝑝 ∘ 𝑞)𝐴𝑔) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑔‘(𝑥 ∘ (𝑝 ∘ 𝑞))))) |
| 243 | 147, 229,
242 | 3eqtr4rd 2775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → ((𝑝 ∘ 𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔))) |
| 244 | 143, 243 | eqtrd 2764 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ 𝑝 ∈ 𝑃) ∧ 𝑞 ∈ 𝑃) → ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔))) |
| 245 | 244 | anasss 466 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑀) ∧ (𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑃)) → ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔))) |
| 246 | 245 | ralrimivva 3172 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → ∀𝑝 ∈ 𝑃 ∀𝑞 ∈ 𝑃 ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔))) |
| 247 | 139, 246 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑀) → (((0g‘𝑆)𝐴𝑔) = 𝑔 ∧ ∀𝑝 ∈ 𝑃 ∀𝑞 ∈ 𝑃 ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔)))) |
| 248 | 247 | ralrimiva 3121 |
. 2
⊢ (𝜑 → ∀𝑔 ∈ 𝑀 (((0g‘𝑆)𝐴𝑔) = 𝑔 ∧ ∀𝑝 ∈ 𝑃 ∀𝑞 ∈ 𝑃 ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔)))) |
| 249 | 29, 140, 132 | isga 19189 |
. 2
⊢ (𝐴 ∈ (𝑆 GrpAct 𝑀) ↔ ((𝑆 ∈ Grp ∧ 𝑀 ∈ V) ∧ (𝐴:(𝑃 × 𝑀)⟶𝑀 ∧ ∀𝑔 ∈ 𝑀 (((0g‘𝑆)𝐴𝑔) = 𝑔 ∧ ∀𝑝 ∈ 𝑃 ∀𝑞 ∈ 𝑃 ((𝑝(+g‘𝑆)𝑞)𝐴𝑔) = (𝑝𝐴(𝑞𝐴𝑔)))))) |
| 250 | 4, 7, 103, 248, 249 | syl22anbrc 32418 |
1
⊢ (𝜑 → 𝐴 ∈ (𝑆 GrpAct 𝑀)) |