Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsp Structured version   Visualization version   GIF version

Theorem fldextrspunlsp 33642
Description: Lemma for fldextrspunfld 33644. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fldextrspunlsp (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))

Proof of Theorem fldextrspunlsp
Dummy variables 𝑎 𝑓 𝑔 𝑝 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunlsp.c . . . . 5 𝐶 = (𝑁‘(𝐺𝐻))
21a1i 11 . . . 4 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
32eleq2d 2814 . . 3 (𝜑 → (𝑥𝐶𝑥 ∈ (𝑁‘(𝐺𝐻))))
4 eqid 2729 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2729 . . . 4 (.r𝐿) = (.r𝐿)
6 eqid 2729 . . . 4 (0g𝐿) = (0g𝐿)
7 fldextrspunlsp.n . . . 4 𝑁 = (RingSpan‘𝐿)
8 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
98fldcrngd 20627 . . . 4 (𝜑𝐿 ∈ CRing)
10 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
11 sdrgsubrg 20676 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1210, 11syl 17 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐿))
13 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
14 sdrgsubrg 20676 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
1513, 14syl 17 . . . 4 (𝜑𝐻 ∈ (SubRing‘𝐿))
164, 5, 6, 7, 9, 12, 15elrgspnsubrun 33173 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘(𝐺𝐻)) ↔ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))))
174subrgss 20457 . . . . . . . . 9 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
1812, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
19 eqid 2729 . . . . . . . . 9 (𝐿s 𝐺) = (𝐿s 𝐺)
2019, 4ressbas2 17184 . . . . . . . 8 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿s 𝐺)))
2118, 20syl 17 . . . . . . 7 (𝜑𝐺 = (Base‘(𝐿s 𝐺)))
22 eqidd 2730 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
2322, 18srasca 21063 . . . . . . . 8 (𝜑 → (𝐿s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)))
2423fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘(𝐿s 𝐺)) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
2521, 24eqtr2d 2765 . . . . . 6 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺)
2625oveq1d 7384 . . . . 5 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺m 𝐵))
279crngringd 20131 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
2827ringcmnd 20169 . . . . . . . . . 10 (𝜑𝐿 ∈ CMnd)
2928cmnmndd 19710 . . . . . . . . 9 (𝜑𝐿 ∈ Mnd)
30 subrgsubg 20462 . . . . . . . . . . 11 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
3112, 30syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubGrp‘𝐿))
326subg0cl 19042 . . . . . . . . . 10 (𝐺 ∈ (SubGrp‘𝐿) → (0g𝐿) ∈ 𝐺)
3331, 32syl 17 . . . . . . . . 9 (𝜑 → (0g𝐿) ∈ 𝐺)
3419, 4, 6ress0g 18665 . . . . . . . . 9 ((𝐿 ∈ Mnd ∧ (0g𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3529, 33, 18, 34syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3623fveq2d 6844 . . . . . . . 8 (𝜑 → (0g‘(𝐿s 𝐺)) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
3735, 36eqtr2d 2765 . . . . . . 7 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g𝐿))
3837breq2d 5114 . . . . . 6 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g𝐿)))
39 eqid 2729 . . . . . . . . 9 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
40 fldextrspunlsp.1 . . . . . . . . . 10 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
4140mptexd 7180 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) ∈ V)
4239sralmod 21070 . . . . . . . . . 10 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4312, 42syl 17 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4439, 41, 8, 43, 18gsumsra 32960 . . . . . . . 8 (𝜑 → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
4522, 18sravsca 21064 . . . . . . . . . . 11 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)))
4645oveqd 7386 . . . . . . . . . 10 (𝜑 → ((𝑎𝑣)(.r𝐿)𝑣) = ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))
4746mpteq2dv 5196 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) = (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))
4847oveq2d 7385 . . . . . . . 8 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))
4944, 48eqtr2d 2765 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
5049eqeq2d 2740 . . . . . 6 (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
5138, 50anbi12d 632 . . . . 5 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
5226, 51rexeqbidv 3317 . . . 4 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
53 eqid 2729 . . . . 5 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
54 eqid 2729 . . . . 5 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
55 eqid 2729 . . . . 5 (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
56 eqid 2729 . . . . 5 (Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))
57 eqid 2729 . . . . 5 (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
58 eqid 2729 . . . . 5 ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))
59 eqid 2729 . . . . . . . . . 10 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
60 eqid 2729 . . . . . . . . . 10 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
6159, 60lbsss 20960 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
6240, 61syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
634subrgss 20457 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6415, 63syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (Base‘𝐿))
65 fldextrspunfld.j . . . . . . . . . . 11 𝐽 = (𝐿s 𝐻)
6665, 4ressbas2 17184 . . . . . . . . . 10 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6764, 66syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘𝐽))
68 eqidd 2730 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
69 fldextrspunfld.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐽))
70 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
7170sdrgss 20678 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
7269, 71syl 17 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐽))
7368, 72srabase 21060 . . . . . . . . 9 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7467, 73eqtrd 2764 . . . . . . . 8 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7562, 74sseqtrrd 3981 . . . . . . 7 (𝜑𝐵𝐻)
7675, 64sstrd 3954 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝐿))
7722, 18srabase 21060 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
7876, 77sseqtrd 3980 . . . . 5 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
7953, 54, 55, 56, 57, 58, 43, 78ellspds 33312 . . . 4 (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))))
80 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
81 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
828ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐿 ∈ Field)
83 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼))
8569ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽))
8610ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿))
8713ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿))
88 fldextrspunlsp.e . . . . . . 7 𝐸 = (𝐿s 𝐶)
8940ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
90 fldextrspunlsp.2 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
9190ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ Fin)
92 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 ∈ (𝐺m 𝐻))
9387, 86, 92elmaprd 32576 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝:𝐻𝐺)
94 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 finSupp (0g𝐿))
95 simprr 772 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))
96 fveq2 6840 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
97 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
9896, 97oveq12d 7387 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓)(.r𝐿)𝑓) = ((𝑝)(.r𝐿)))
9998cbvmptv 5206 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑝)(.r𝐿)))
10099oveq2i 7380 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿))))
10195, 100eqtrdi 2780 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿)))))
10280, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101fldextrspunlsplem 33641 . . . . . 6 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
103102r19.29an 3137 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
104 breq1 5105 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝 finSupp (0g𝐿) ↔ (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿)))
105 fveq1 6839 . . . . . . . . . . . 12 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝𝑓) = ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓))
106105oveq1d 7384 . . . . . . . . . . 11 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝𝑓)(.r𝐿)𝑓) = (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))
107106mpteq2dv 5196 . . . . . . . . . 10 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))
108107oveq2d 7385 . . . . . . . . 9 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
109108eqeq2d 2740 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
110104, 109anbi12d 632 . . . . . . 7 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))))
11110ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿))
11213ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿))
11340adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
11410adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿))
115 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 ∈ (𝐺m 𝐵))
116113, 114, 115elmaprd 32576 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎:𝐵𝐺)
117116ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
118117ffvelcdmda 7038 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
11933ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ 𝐺)
120118, 119ifclda 4520 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ 𝐺)
121120fmpttd 7069 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻𝐺)
122111, 112, 121elmapdd 8791 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) ∈ (𝐺m 𝐻))
123 fvexd 6855 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (0g𝐿) ∈ V)
124121ffund 6674 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → Fun (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))))
125 simprl 770 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑎 finSupp (0g𝐿))
126116ffnd 6671 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 Fn 𝐵)
127126ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑎 Fn 𝐵)
12840ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
129 fvexd 6855 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (0g𝐿) ∈ V)
130 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔𝐵)
131 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
132131eldifbd 3924 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g𝐿)))
133130, 132eldifd 3922 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
134127, 128, 129, 133fvdifsupp 8127 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (𝑎𝑔) = (0g𝐿))
135 eqidd 2730 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑔𝐵) → (0g𝐿) = (0g𝐿))
136134, 135ifeqda 4521 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (0g𝐿))
137136, 112suppss2 8156 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) supp (0g𝐿)) ⊆ (𝑎 supp (0g𝐿)))
138122, 123, 124, 125, 137fsuppsssuppgd 9309 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿))
139 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))
140 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓)
141 suppssdm 8133 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 supp (0g𝐿)) ⊆ dom 𝑎
142116fdmd 6680 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → dom 𝑎 = 𝐵)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → dom 𝑎 = 𝐵)
144141, 143sseqtrid 3986 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐵)
145144sselda 3943 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐵)
146145adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑓𝐵)
147140, 146eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔𝐵)
148147iftrued 4492 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑔))
149 fveq2 6840 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝑎𝑔) = (𝑎𝑓))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → (𝑎𝑔) = (𝑎𝑓))
151148, 150eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑓))
15275ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵𝐻)
153144, 152sstrd 3954 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐻)
154153sselda 3943 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐻)
155 fvexd 6855 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (𝑎𝑓) ∈ V)
156139, 151, 154, 155fvmptd2 6958 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = (𝑎𝑓))
157156oveq1d 7384 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = ((𝑎𝑓)(.r𝐿)𝑓))
158157mpteq2dva 5195 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)))
159 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣 → (𝑎𝑓) = (𝑎𝑣))
160 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣𝑓 = 𝑣)
161159, 160oveq12d 7387 . . . . . . . . . . . . . . 15 (𝑓 = 𝑣 → ((𝑎𝑓)(.r𝐿)𝑓) = ((𝑎𝑣)(.r𝐿)𝑣))
162161cbvmptv 5206 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))
163158, 162eqtrdi 2780 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣)))
164163oveq2d 7385 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
16528ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐿 ∈ CMnd)
16613ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ∈ (SubDRing‘𝐿))
167 eleq1w 2811 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐵𝑓𝐵))
168167, 149ifbieq1d 4509 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
169 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
170169eldifad 3923 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓𝐻)
171 fvexd 6855 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑓) ∈ V)
172 fvexd 6855 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
173171, 172ifcld 4531 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) ∈ V)
174139, 168, 170, 173fvmptd3 6973 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
175174oveq1d 7384 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓))
176126ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑎 Fn 𝐵)
17740ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
178 fvexd 6855 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (0g𝐿) ∈ V)
179 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓𝐵)
180 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
181180eldifbd 3924 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g𝐿)))
182179, 181eldifd 3922 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
183176, 177, 178, 182fvdifsupp 8127 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (𝑎𝑓) = (0g𝐿))
184 eqidd 2730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑓𝐵) → (0g𝐿) = (0g𝐿))
185183, 184ifeqda 4521 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) = (0g𝐿))
186185oveq1d 7384 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓) = ((0g𝐿)(.r𝐿)𝑓))
18727ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
188166, 14, 633syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ⊆ (Base‘𝐿))
189188ssdifssd 4106 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐻 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
190189sselda 3943 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (Base‘𝐿))
1914, 5, 6, 187, 190ringlzd 20180 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑓) = (0g𝐿))
192175, 186, 1913eqtrd 2768 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (0g𝐿))
193 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎 finSupp (0g𝐿))
194193fsuppimpd 9296 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ∈ Fin)
19527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝐿 ∈ Ring)
19618ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → 𝐺 ⊆ (Base‘𝐿))
197116ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
198197ffvelcdmda 7038 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
199196, 198sseldd 3944 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ (Base‘𝐿))
20018, 33sseldd 3944 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐿) ∈ (Base‘𝐿))
201200ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ (Base‘𝐿))
202199, 201ifclda 4520 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ (Base‘𝐿))
203202fmpttd 7069 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻⟶(Base‘𝐿))
204203ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) ∈ (Base‘𝐿))
205188sselda 3943 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝑓 ∈ (Base‘𝐿))
2064, 5, 195, 204, 205ringcld 20145 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) ∈ (Base‘𝐿))
2074, 6, 165, 166, 192, 194, 206, 153gsummptres2 32966 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
208113adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
209126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑎 Fn 𝐵)
210208adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
211 fvexd 6855 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
212 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
213209, 210, 211, 212fvdifsupp 8127 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑣) = (0g𝐿))
214213oveq1d 7384 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = ((0g𝐿)(.r𝐿)𝑣))
21527ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
21676ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ⊆ (Base‘𝐿))
217216ssdifssd 4106 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐵 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
218217sselda 3943 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (Base‘𝐿))
2194, 5, 6, 215, 218ringlzd 20180 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑣) = (0g𝐿))
220214, 219eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = (0g𝐿))
22127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐿 ∈ Ring)
22218ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐺 ⊆ (Base‘𝐿))
223116adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎:𝐵𝐺)
224223ffvelcdmda 7038 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ 𝐺)
225222, 224sseldd 3944 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ (Base‘𝐿))
226216sselda 3943 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝑣 ∈ (Base‘𝐿))
2274, 5, 221, 225, 226ringcld 20145 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → ((𝑎𝑣)(.r𝐿)𝑣) ∈ (Base‘𝐿))
2284, 6, 165, 208, 220, 194, 227, 144gsummptres2 32966 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
229164, 207, 2283eqtr4d 2774 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
230229eqeq2d 2740 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
231230biimpar 477 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
232231anasss 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
233138, 232jca 511 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
234110, 122, 233rspcedvdw 3588 . . . . . 6 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
235234r19.29an 3137 . . . . 5 ((𝜑 ∧ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
236103, 235impbida 800 . . . 4 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
23752, 79, 2363bitr4rd 312 . . 3 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
2383, 16, 2373bitrd 305 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
239238eqrdv 2727 1 (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  Basecbs 17155  s cress 17176  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  SubGrpcsubg 19028  CMndccmn 19686  Ringcrg 20118  SubRingcsubrg 20454  RingSpancrgspn 20495  Fieldcfield 20615  SubDRingcsdrg 20671  LModclmod 20742  LSpanclspn 20853  LBasisclbs 20957  subringAlg csra 21054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-r1 9693  df-rank 9694  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-s2 14790  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rgspn 20496  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lbs 20958  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-ind 32747
This theorem is referenced by:  fldextrspunlem1  33643
  Copyright terms: Public domain W3C validator