Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsp Structured version   Visualization version   GIF version

Theorem fldextrspunlsp 33666
Description: Lemma for fldextrspunfld 33668. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fldextrspunlsp (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))

Proof of Theorem fldextrspunlsp
Dummy variables 𝑎 𝑓 𝑔 𝑝 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunlsp.c . . . . 5 𝐶 = (𝑁‘(𝐺𝐻))
21a1i 11 . . . 4 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
32eleq2d 2819 . . 3 (𝜑 → (𝑥𝐶𝑥 ∈ (𝑁‘(𝐺𝐻))))
4 eqid 2734 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2734 . . . 4 (.r𝐿) = (.r𝐿)
6 eqid 2734 . . . 4 (0g𝐿) = (0g𝐿)
7 fldextrspunlsp.n . . . 4 𝑁 = (RingSpan‘𝐿)
8 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
98fldcrngd 20711 . . . 4 (𝜑𝐿 ∈ CRing)
10 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
11 sdrgsubrg 20761 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1210, 11syl 17 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐿))
13 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
14 sdrgsubrg 20761 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
1513, 14syl 17 . . . 4 (𝜑𝐻 ∈ (SubRing‘𝐿))
164, 5, 6, 7, 9, 12, 15elrgspnsubrun 33197 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘(𝐺𝐻)) ↔ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))))
174subrgss 20541 . . . . . . . . 9 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
1812, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
19 eqid 2734 . . . . . . . . 9 (𝐿s 𝐺) = (𝐿s 𝐺)
2019, 4ressbas2 17262 . . . . . . . 8 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿s 𝐺)))
2118, 20syl 17 . . . . . . 7 (𝜑𝐺 = (Base‘(𝐿s 𝐺)))
22 eqidd 2735 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
2322, 18srasca 21148 . . . . . . . 8 (𝜑 → (𝐿s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)))
2423fveq2d 6890 . . . . . . 7 (𝜑 → (Base‘(𝐿s 𝐺)) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
2521, 24eqtr2d 2770 . . . . . 6 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺)
2625oveq1d 7428 . . . . 5 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺m 𝐵))
279crngringd 20212 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
2827ringcmnd 20250 . . . . . . . . . 10 (𝜑𝐿 ∈ CMnd)
2928cmnmndd 19791 . . . . . . . . 9 (𝜑𝐿 ∈ Mnd)
30 subrgsubg 20546 . . . . . . . . . . 11 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
3112, 30syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubGrp‘𝐿))
326subg0cl 19122 . . . . . . . . . 10 (𝐺 ∈ (SubGrp‘𝐿) → (0g𝐿) ∈ 𝐺)
3331, 32syl 17 . . . . . . . . 9 (𝜑 → (0g𝐿) ∈ 𝐺)
3419, 4, 6ress0g 18745 . . . . . . . . 9 ((𝐿 ∈ Mnd ∧ (0g𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3529, 33, 18, 34syl3anc 1372 . . . . . . . 8 (𝜑 → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3623fveq2d 6890 . . . . . . . 8 (𝜑 → (0g‘(𝐿s 𝐺)) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
3735, 36eqtr2d 2770 . . . . . . 7 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g𝐿))
3837breq2d 5135 . . . . . 6 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g𝐿)))
39 eqid 2734 . . . . . . . . 9 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
40 fldextrspunlsp.1 . . . . . . . . . 10 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
4140mptexd 7226 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) ∈ V)
4239sralmod 21157 . . . . . . . . . 10 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4312, 42syl 17 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4439, 41, 8, 43, 18gsumsra 32994 . . . . . . . 8 (𝜑 → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
4522, 18sravsca 21150 . . . . . . . . . . 11 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)))
4645oveqd 7430 . . . . . . . . . 10 (𝜑 → ((𝑎𝑣)(.r𝐿)𝑣) = ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))
4746mpteq2dv 5224 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) = (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))
4847oveq2d 7429 . . . . . . . 8 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))
4944, 48eqtr2d 2770 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
5049eqeq2d 2745 . . . . . 6 (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
5138, 50anbi12d 632 . . . . 5 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
5226, 51rexeqbidv 3330 . . . 4 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
53 eqid 2734 . . . . 5 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
54 eqid 2734 . . . . 5 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
55 eqid 2734 . . . . 5 (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
56 eqid 2734 . . . . 5 (Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))
57 eqid 2734 . . . . 5 (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
58 eqid 2734 . . . . 5 ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))
59 eqid 2734 . . . . . . . . . 10 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
60 eqid 2734 . . . . . . . . . 10 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
6159, 60lbsss 21045 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
6240, 61syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
634subrgss 20541 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6415, 63syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (Base‘𝐿))
65 fldextrspunfld.j . . . . . . . . . . 11 𝐽 = (𝐿s 𝐻)
6665, 4ressbas2 17262 . . . . . . . . . 10 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6764, 66syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘𝐽))
68 eqidd 2735 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
69 fldextrspunfld.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐽))
70 eqid 2734 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
7170sdrgss 20763 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
7269, 71syl 17 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐽))
7368, 72srabase 21145 . . . . . . . . 9 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7467, 73eqtrd 2769 . . . . . . . 8 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7562, 74sseqtrrd 4001 . . . . . . 7 (𝜑𝐵𝐻)
7675, 64sstrd 3974 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝐿))
7722, 18srabase 21145 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
7876, 77sseqtrd 4000 . . . . 5 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
7953, 54, 55, 56, 57, 58, 43, 78ellspds 33336 . . . 4 (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))))
80 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
81 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
828ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐿 ∈ Field)
83 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼))
8569ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽))
8610ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿))
8713ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿))
88 fldextrspunlsp.e . . . . . . 7 𝐸 = (𝐿s 𝐶)
8940ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
90 fldextrspunlsp.2 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
9190ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ Fin)
92 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 ∈ (𝐺m 𝐻))
9387, 86, 92elmaprd 32625 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝:𝐻𝐺)
94 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 finSupp (0g𝐿))
95 simprr 772 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))
96 fveq2 6886 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
97 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
9896, 97oveq12d 7431 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓)(.r𝐿)𝑓) = ((𝑝)(.r𝐿)))
9998cbvmptv 5235 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑝)(.r𝐿)))
10099oveq2i 7424 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿))))
10195, 100eqtrdi 2785 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿)))))
10280, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101fldextrspunlsplem 33665 . . . . . 6 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
103102r19.29an 3145 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
104 breq1 5126 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝 finSupp (0g𝐿) ↔ (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿)))
105 fveq1 6885 . . . . . . . . . . . 12 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝𝑓) = ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓))
106105oveq1d 7428 . . . . . . . . . . 11 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝𝑓)(.r𝐿)𝑓) = (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))
107106mpteq2dv 5224 . . . . . . . . . 10 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))
108107oveq2d 7429 . . . . . . . . 9 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
109108eqeq2d 2745 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
110104, 109anbi12d 632 . . . . . . 7 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))))
11110ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿))
11213ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿))
11340adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
11410adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿))
115 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 ∈ (𝐺m 𝐵))
116113, 114, 115elmaprd 32625 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎:𝐵𝐺)
117116ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
118117ffvelcdmda 7084 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
11933ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ 𝐺)
120118, 119ifclda 4541 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ 𝐺)
121120fmpttd 7115 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻𝐺)
122111, 112, 121elmapdd 8863 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) ∈ (𝐺m 𝐻))
123 fvexd 6901 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (0g𝐿) ∈ V)
124121ffund 6720 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → Fun (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))))
125 simprl 770 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑎 finSupp (0g𝐿))
126116ffnd 6717 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 Fn 𝐵)
127126ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑎 Fn 𝐵)
12840ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
129 fvexd 6901 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (0g𝐿) ∈ V)
130 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔𝐵)
131 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
132131eldifbd 3944 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g𝐿)))
133130, 132eldifd 3942 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
134127, 128, 129, 133fvdifsupp 8178 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (𝑎𝑔) = (0g𝐿))
135 eqidd 2735 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑔𝐵) → (0g𝐿) = (0g𝐿))
136134, 135ifeqda 4542 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (0g𝐿))
137136, 112suppss2 8207 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) supp (0g𝐿)) ⊆ (𝑎 supp (0g𝐿)))
138122, 123, 124, 125, 137fsuppsssuppgd 9404 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿))
139 eqid 2734 . . . . . . . . . . . . . . . . 17 (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))
140 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓)
141 suppssdm 8184 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 supp (0g𝐿)) ⊆ dom 𝑎
142116fdmd 6726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → dom 𝑎 = 𝐵)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → dom 𝑎 = 𝐵)
144141, 143sseqtrid 4006 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐵)
145144sselda 3963 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐵)
146145adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑓𝐵)
147140, 146eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔𝐵)
148147iftrued 4513 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑔))
149 fveq2 6886 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝑎𝑔) = (𝑎𝑓))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → (𝑎𝑔) = (𝑎𝑓))
151148, 150eqtrd 2769 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑓))
15275ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵𝐻)
153144, 152sstrd 3974 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐻)
154153sselda 3963 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐻)
155 fvexd 6901 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (𝑎𝑓) ∈ V)
156139, 151, 154, 155fvmptd2 7004 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = (𝑎𝑓))
157156oveq1d 7428 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = ((𝑎𝑓)(.r𝐿)𝑓))
158157mpteq2dva 5222 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)))
159 fveq2 6886 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣 → (𝑎𝑓) = (𝑎𝑣))
160 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣𝑓 = 𝑣)
161159, 160oveq12d 7431 . . . . . . . . . . . . . . 15 (𝑓 = 𝑣 → ((𝑎𝑓)(.r𝐿)𝑓) = ((𝑎𝑣)(.r𝐿)𝑣))
162161cbvmptv 5235 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))
163158, 162eqtrdi 2785 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣)))
164163oveq2d 7429 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
16528ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐿 ∈ CMnd)
16613ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ∈ (SubDRing‘𝐿))
167 eleq1w 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐵𝑓𝐵))
168167, 149ifbieq1d 4530 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
169 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
170169eldifad 3943 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓𝐻)
171 fvexd 6901 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑓) ∈ V)
172 fvexd 6901 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
173171, 172ifcld 4552 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) ∈ V)
174139, 168, 170, 173fvmptd3 7019 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
175174oveq1d 7428 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓))
176126ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑎 Fn 𝐵)
17740ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
178 fvexd 6901 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (0g𝐿) ∈ V)
179 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓𝐵)
180 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
181180eldifbd 3944 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g𝐿)))
182179, 181eldifd 3942 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
183176, 177, 178, 182fvdifsupp 8178 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (𝑎𝑓) = (0g𝐿))
184 eqidd 2735 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑓𝐵) → (0g𝐿) = (0g𝐿))
185183, 184ifeqda 4542 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) = (0g𝐿))
186185oveq1d 7428 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓) = ((0g𝐿)(.r𝐿)𝑓))
18727ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
188166, 14, 633syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ⊆ (Base‘𝐿))
189188ssdifssd 4127 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐻 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
190189sselda 3963 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (Base‘𝐿))
1914, 5, 6, 187, 190ringlzd 20261 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑓) = (0g𝐿))
192175, 186, 1913eqtrd 2773 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (0g𝐿))
193 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎 finSupp (0g𝐿))
194193fsuppimpd 9391 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ∈ Fin)
19527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝐿 ∈ Ring)
19618ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → 𝐺 ⊆ (Base‘𝐿))
197116ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
198197ffvelcdmda 7084 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
199196, 198sseldd 3964 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ (Base‘𝐿))
20018, 33sseldd 3964 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐿) ∈ (Base‘𝐿))
201200ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ (Base‘𝐿))
202199, 201ifclda 4541 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ (Base‘𝐿))
203202fmpttd 7115 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻⟶(Base‘𝐿))
204203ffvelcdmda 7084 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) ∈ (Base‘𝐿))
205188sselda 3963 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝑓 ∈ (Base‘𝐿))
2064, 5, 195, 204, 205ringcld 20226 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) ∈ (Base‘𝐿))
2074, 6, 165, 166, 192, 194, 206, 153gsummptres2 33000 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
208113adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
209126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑎 Fn 𝐵)
210208adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
211 fvexd 6901 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
212 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
213209, 210, 211, 212fvdifsupp 8178 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑣) = (0g𝐿))
214213oveq1d 7428 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = ((0g𝐿)(.r𝐿)𝑣))
21527ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
21676ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ⊆ (Base‘𝐿))
217216ssdifssd 4127 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐵 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
218217sselda 3963 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (Base‘𝐿))
2194, 5, 6, 215, 218ringlzd 20261 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑣) = (0g𝐿))
220214, 219eqtrd 2769 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = (0g𝐿))
22127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐿 ∈ Ring)
22218ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐺 ⊆ (Base‘𝐿))
223116adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎:𝐵𝐺)
224223ffvelcdmda 7084 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ 𝐺)
225222, 224sseldd 3964 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ (Base‘𝐿))
226216sselda 3963 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝑣 ∈ (Base‘𝐿))
2274, 5, 221, 225, 226ringcld 20226 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → ((𝑎𝑣)(.r𝐿)𝑣) ∈ (Base‘𝐿))
2284, 6, 165, 208, 220, 194, 227, 144gsummptres2 33000 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
229164, 207, 2283eqtr4d 2779 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
230229eqeq2d 2745 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
231230biimpar 477 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
232231anasss 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
233138, 232jca 511 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
234110, 122, 233rspcedvdw 3608 . . . . . 6 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
235234r19.29an 3145 . . . . 5 ((𝜑 ∧ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
236103, 235impbida 800 . . . 4 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
23752, 79, 2363bitr4rd 312 . . 3 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
2383, 16, 2373bitrd 305 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
239238eqrdv 2732 1 (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  cdif 3928  cun 3929  wss 3931  ifcif 4505   class class class wbr 5123  cmpt 5205  dom cdm 5665   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413   supp csupp 8167  m cmap 8848  Fincfn 8967   finSupp cfsupp 9383  Basecbs 17230  s cress 17253  .rcmulr 17275  Scalarcsca 17277   ·𝑠 cvsca 17278  0gc0g 17456   Σg cgsu 17457  Mndcmnd 18717  SubGrpcsubg 19108  CMndccmn 19767  Ringcrg 20199  SubRingcsubrg 20538  RingSpancrgspn 20579  Fieldcfield 20699  SubDRingcsdrg 20756  LModclmod 20827  LSpanclspn 20938  LBasisclbs 21042  subringAlg csra 21139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-r1 9786  df-rank 9787  df-card 9961  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-nzr 20482  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-drng 20700  df-field 20701  df-sdrg 20757  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lmhm 20990  df-lbs 21043  df-sra 21141  df-rgmod 21142  df-cnfld 21328  df-zring 21421  df-dsmm 21707  df-frlm 21722  df-uvc 21758  df-ind 32781
This theorem is referenced by:  fldextrspunlem1  33667
  Copyright terms: Public domain W3C validator