Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsp Structured version   Visualization version   GIF version

Theorem fldextrspunlsp 33759
Description: Lemma for fldextrspunfld 33761. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fldextrspunlsp (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))

Proof of Theorem fldextrspunlsp
Dummy variables 𝑎 𝑓 𝑔 𝑝 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunlsp.c . . . . 5 𝐶 = (𝑁‘(𝐺𝐻))
21a1i 11 . . . 4 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
32eleq2d 2819 . . 3 (𝜑 → (𝑥𝐶𝑥 ∈ (𝑁‘(𝐺𝐻))))
4 eqid 2733 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2733 . . . 4 (.r𝐿) = (.r𝐿)
6 eqid 2733 . . . 4 (0g𝐿) = (0g𝐿)
7 fldextrspunlsp.n . . . 4 𝑁 = (RingSpan‘𝐿)
8 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
98fldcrngd 20666 . . . 4 (𝜑𝐿 ∈ CRing)
10 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
11 sdrgsubrg 20715 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1210, 11syl 17 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐿))
13 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
14 sdrgsubrg 20715 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
1513, 14syl 17 . . . 4 (𝜑𝐻 ∈ (SubRing‘𝐿))
164, 5, 6, 7, 9, 12, 15elrgspnsubrun 33259 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘(𝐺𝐻)) ↔ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))))
174subrgss 20496 . . . . . . . . 9 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
1812, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
19 eqid 2733 . . . . . . . . 9 (𝐿s 𝐺) = (𝐿s 𝐺)
2019, 4ressbas2 17156 . . . . . . . 8 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿s 𝐺)))
2118, 20syl 17 . . . . . . 7 (𝜑𝐺 = (Base‘(𝐿s 𝐺)))
22 eqidd 2734 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
2322, 18srasca 21123 . . . . . . . 8 (𝜑 → (𝐿s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)))
2423fveq2d 6835 . . . . . . 7 (𝜑 → (Base‘(𝐿s 𝐺)) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
2521, 24eqtr2d 2769 . . . . . 6 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺)
2625oveq1d 7370 . . . . 5 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺m 𝐵))
279crngringd 20172 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
2827ringcmnd 20210 . . . . . . . . . 10 (𝜑𝐿 ∈ CMnd)
2928cmnmndd 19724 . . . . . . . . 9 (𝜑𝐿 ∈ Mnd)
30 subrgsubg 20501 . . . . . . . . . . 11 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
3112, 30syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubGrp‘𝐿))
326subg0cl 19055 . . . . . . . . . 10 (𝐺 ∈ (SubGrp‘𝐿) → (0g𝐿) ∈ 𝐺)
3331, 32syl 17 . . . . . . . . 9 (𝜑 → (0g𝐿) ∈ 𝐺)
3419, 4, 6ress0g 18678 . . . . . . . . 9 ((𝐿 ∈ Mnd ∧ (0g𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3529, 33, 18, 34syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3623fveq2d 6835 . . . . . . . 8 (𝜑 → (0g‘(𝐿s 𝐺)) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
3735, 36eqtr2d 2769 . . . . . . 7 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g𝐿))
3837breq2d 5107 . . . . . 6 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g𝐿)))
39 eqid 2733 . . . . . . . . 9 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
40 fldextrspunlsp.1 . . . . . . . . . 10 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
4140mptexd 7167 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) ∈ V)
4239sralmod 21130 . . . . . . . . . 10 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4312, 42syl 17 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4439, 41, 8, 43, 18gsumsra 33058 . . . . . . . 8 (𝜑 → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
4522, 18sravsca 21124 . . . . . . . . . . 11 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)))
4645oveqd 7372 . . . . . . . . . 10 (𝜑 → ((𝑎𝑣)(.r𝐿)𝑣) = ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))
4746mpteq2dv 5189 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) = (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))
4847oveq2d 7371 . . . . . . . 8 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))
4944, 48eqtr2d 2769 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
5049eqeq2d 2744 . . . . . 6 (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
5138, 50anbi12d 632 . . . . 5 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
5226, 51rexeqbidv 3314 . . . 4 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
53 eqid 2733 . . . . 5 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
54 eqid 2733 . . . . 5 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
55 eqid 2733 . . . . 5 (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
56 eqid 2733 . . . . 5 (Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))
57 eqid 2733 . . . . 5 (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
58 eqid 2733 . . . . 5 ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))
59 eqid 2733 . . . . . . . . . 10 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
60 eqid 2733 . . . . . . . . . 10 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
6159, 60lbsss 21020 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
6240, 61syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
634subrgss 20496 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6415, 63syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (Base‘𝐿))
65 fldextrspunfld.j . . . . . . . . . . 11 𝐽 = (𝐿s 𝐻)
6665, 4ressbas2 17156 . . . . . . . . . 10 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6764, 66syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘𝐽))
68 eqidd 2734 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
69 fldextrspunfld.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐽))
70 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
7170sdrgss 20717 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
7269, 71syl 17 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐽))
7368, 72srabase 21120 . . . . . . . . 9 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7467, 73eqtrd 2768 . . . . . . . 8 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7562, 74sseqtrrd 3968 . . . . . . 7 (𝜑𝐵𝐻)
7675, 64sstrd 3941 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝐿))
7722, 18srabase 21120 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
7876, 77sseqtrd 3967 . . . . 5 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
7953, 54, 55, 56, 57, 58, 43, 78ellspds 33377 . . . 4 (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))))
80 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
81 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
828ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐿 ∈ Field)
83 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼))
8569ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽))
8610ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿))
8713ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿))
88 fldextrspunlsp.e . . . . . . 7 𝐸 = (𝐿s 𝐶)
8940ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
90 fldextrspunlsp.2 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
9190ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ Fin)
92 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 ∈ (𝐺m 𝐻))
9387, 86, 92elmaprd 32685 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝:𝐻𝐺)
94 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 finSupp (0g𝐿))
95 simprr 772 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))
96 fveq2 6831 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
97 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
9896, 97oveq12d 7373 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓)(.r𝐿)𝑓) = ((𝑝)(.r𝐿)))
9998cbvmptv 5199 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑝)(.r𝐿)))
10099oveq2i 7366 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿))))
10195, 100eqtrdi 2784 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿)))))
10280, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101fldextrspunlsplem 33758 . . . . . 6 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
103102r19.29an 3137 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
104 breq1 5098 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝 finSupp (0g𝐿) ↔ (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿)))
105 fveq1 6830 . . . . . . . . . . . 12 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝𝑓) = ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓))
106105oveq1d 7370 . . . . . . . . . . 11 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝𝑓)(.r𝐿)𝑓) = (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))
107106mpteq2dv 5189 . . . . . . . . . 10 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))
108107oveq2d 7371 . . . . . . . . 9 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
109108eqeq2d 2744 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
110104, 109anbi12d 632 . . . . . . 7 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))))
11110ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿))
11213ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿))
11340adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
11410adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿))
115 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 ∈ (𝐺m 𝐵))
116113, 114, 115elmaprd 32685 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎:𝐵𝐺)
117116ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
118117ffvelcdmda 7026 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
11933ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ 𝐺)
120118, 119ifclda 4512 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ 𝐺)
121120fmpttd 7057 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻𝐺)
122111, 112, 121elmapdd 8774 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) ∈ (𝐺m 𝐻))
123 fvexd 6846 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (0g𝐿) ∈ V)
124121ffund 6663 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → Fun (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))))
125 simprl 770 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑎 finSupp (0g𝐿))
126116ffnd 6660 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 Fn 𝐵)
127126ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑎 Fn 𝐵)
12840ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
129 fvexd 6846 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (0g𝐿) ∈ V)
130 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔𝐵)
131 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
132131eldifbd 3911 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g𝐿)))
133130, 132eldifd 3909 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
134127, 128, 129, 133fvdifsupp 8110 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (𝑎𝑔) = (0g𝐿))
135 eqidd 2734 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑔𝐵) → (0g𝐿) = (0g𝐿))
136134, 135ifeqda 4513 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (0g𝐿))
137136, 112suppss2 8139 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) supp (0g𝐿)) ⊆ (𝑎 supp (0g𝐿)))
138122, 123, 124, 125, 137fsuppsssuppgd 9277 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿))
139 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))
140 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓)
141 suppssdm 8116 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 supp (0g𝐿)) ⊆ dom 𝑎
142116fdmd 6669 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → dom 𝑎 = 𝐵)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → dom 𝑎 = 𝐵)
144141, 143sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐵)
145144sselda 3930 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐵)
146145adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑓𝐵)
147140, 146eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔𝐵)
148147iftrued 4484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑔))
149 fveq2 6831 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝑎𝑔) = (𝑎𝑓))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → (𝑎𝑔) = (𝑎𝑓))
151148, 150eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑓))
15275ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵𝐻)
153144, 152sstrd 3941 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐻)
154153sselda 3930 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐻)
155 fvexd 6846 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (𝑎𝑓) ∈ V)
156139, 151, 154, 155fvmptd2 6946 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = (𝑎𝑓))
157156oveq1d 7370 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = ((𝑎𝑓)(.r𝐿)𝑓))
158157mpteq2dva 5188 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)))
159 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣 → (𝑎𝑓) = (𝑎𝑣))
160 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣𝑓 = 𝑣)
161159, 160oveq12d 7373 . . . . . . . . . . . . . . 15 (𝑓 = 𝑣 → ((𝑎𝑓)(.r𝐿)𝑓) = ((𝑎𝑣)(.r𝐿)𝑣))
162161cbvmptv 5199 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))
163158, 162eqtrdi 2784 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣)))
164163oveq2d 7371 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
16528ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐿 ∈ CMnd)
16613ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ∈ (SubDRing‘𝐿))
167 eleq1w 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐵𝑓𝐵))
168167, 149ifbieq1d 4501 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
169 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
170169eldifad 3910 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓𝐻)
171 fvexd 6846 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑓) ∈ V)
172 fvexd 6846 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
173171, 172ifcld 4523 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) ∈ V)
174139, 168, 170, 173fvmptd3 6961 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
175174oveq1d 7370 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓))
176126ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑎 Fn 𝐵)
17740ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
178 fvexd 6846 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (0g𝐿) ∈ V)
179 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓𝐵)
180 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
181180eldifbd 3911 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g𝐿)))
182179, 181eldifd 3909 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
183176, 177, 178, 182fvdifsupp 8110 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (𝑎𝑓) = (0g𝐿))
184 eqidd 2734 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑓𝐵) → (0g𝐿) = (0g𝐿))
185183, 184ifeqda 4513 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) = (0g𝐿))
186185oveq1d 7370 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓) = ((0g𝐿)(.r𝐿)𝑓))
18727ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
188166, 14, 633syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ⊆ (Base‘𝐿))
189188ssdifssd 4096 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐻 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
190189sselda 3930 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (Base‘𝐿))
1914, 5, 6, 187, 190ringlzd 20221 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑓) = (0g𝐿))
192175, 186, 1913eqtrd 2772 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (0g𝐿))
193 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎 finSupp (0g𝐿))
194193fsuppimpd 9264 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ∈ Fin)
19527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝐿 ∈ Ring)
19618ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → 𝐺 ⊆ (Base‘𝐿))
197116ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
198197ffvelcdmda 7026 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
199196, 198sseldd 3931 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ (Base‘𝐿))
20018, 33sseldd 3931 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐿) ∈ (Base‘𝐿))
201200ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ (Base‘𝐿))
202199, 201ifclda 4512 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ (Base‘𝐿))
203202fmpttd 7057 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻⟶(Base‘𝐿))
204203ffvelcdmda 7026 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) ∈ (Base‘𝐿))
205188sselda 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝑓 ∈ (Base‘𝐿))
2064, 5, 195, 204, 205ringcld 20186 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) ∈ (Base‘𝐿))
2074, 6, 165, 166, 192, 194, 206, 153gsummptres2 33064 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
208113adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
209126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑎 Fn 𝐵)
210208adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
211 fvexd 6846 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
212 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
213209, 210, 211, 212fvdifsupp 8110 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑣) = (0g𝐿))
214213oveq1d 7370 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = ((0g𝐿)(.r𝐿)𝑣))
21527ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
21676ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ⊆ (Base‘𝐿))
217216ssdifssd 4096 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐵 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
218217sselda 3930 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (Base‘𝐿))
2194, 5, 6, 215, 218ringlzd 20221 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑣) = (0g𝐿))
220214, 219eqtrd 2768 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = (0g𝐿))
22127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐿 ∈ Ring)
22218ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐺 ⊆ (Base‘𝐿))
223116adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎:𝐵𝐺)
224223ffvelcdmda 7026 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ 𝐺)
225222, 224sseldd 3931 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ (Base‘𝐿))
226216sselda 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝑣 ∈ (Base‘𝐿))
2274, 5, 221, 225, 226ringcld 20186 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → ((𝑎𝑣)(.r𝐿)𝑣) ∈ (Base‘𝐿))
2284, 6, 165, 208, 220, 194, 227, 144gsummptres2 33064 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
229164, 207, 2283eqtr4d 2778 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
230229eqeq2d 2744 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
231230biimpar 477 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
232231anasss 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
233138, 232jca 511 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
234110, 122, 233rspcedvdw 3576 . . . . . 6 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
235234r19.29an 3137 . . . . 5 ((𝜑 ∧ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
236103, 235impbida 800 . . . 4 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
23752, 79, 2363bitr4rd 312 . . 3 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
2383, 16, 2373bitrd 305 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
239238eqrdv 2731 1 (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  wss 3898  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  Basecbs 17127  s cress 17148  .rcmulr 17169  Scalarcsca 17171   ·𝑠 cvsca 17172  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  SubGrpcsubg 19041  CMndccmn 19700  Ringcrg 20159  SubRingcsubrg 20493  RingSpancrgspn 20534  Fieldcfield 20654  SubDRingcsdrg 20710  LModclmod 20802  LSpanclspn 20913  LBasisclbs 21017  subringAlg csra 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9489  ax-inf2 9542  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-r1 9668  df-rank 9669  df-card 9843  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-s2 14762  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-nzr 20437  df-subrng 20470  df-subrg 20494  df-rgspn 20535  df-drng 20655  df-field 20656  df-sdrg 20711  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lmhm 20965  df-lbs 21018  df-sra 21116  df-rgmod 21117  df-cnfld 21301  df-zring 21393  df-dsmm 21678  df-frlm 21693  df-uvc 21729  df-ind 32858
This theorem is referenced by:  fldextrspunlem1  33760
  Copyright terms: Public domain W3C validator