Step | Hyp | Ref
| Expression |
1 | | fldextrspunlsp.c |
. . . . 5
⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
3 | 2 | eleq2d 2826 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ (𝑁‘(𝐺 ∪ 𝐻)))) |
4 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
5 | | eqid 2736 |
. . . 4
⊢
(.r‘𝐿) = (.r‘𝐿) |
6 | | eqid 2736 |
. . . 4
⊢
(0g‘𝐿) = (0g‘𝐿) |
7 | | fldextrspunlsp.n |
. . . 4
⊢ 𝑁 = (RingSpan‘𝐿) |
8 | | fldextrspunfld.2 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Field) |
9 | 8 | fldcrngd 20734 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ CRing) |
10 | | fldextrspunfld.5 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
11 | | sdrgsubrg 20784 |
. . . . 5
⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
13 | | fldextrspunfld.6 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
14 | | sdrgsubrg 20784 |
. . . . 5
⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿)) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (SubRing‘𝐿)) |
16 | 4, 5, 6, 7, 9, 12,
15 | elrgspnsubrun 33241 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑁‘(𝐺 ∪ 𝐻)) ↔ ∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)))))) |
17 | 4 | subrgss 20564 |
. . . . . . . . 9
⊢ (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
18 | 12, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
19 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝐿 ↾s 𝐺) = (𝐿 ↾s 𝐺) |
20 | 19, 4 | ressbas2 17279 |
. . . . . . . 8
⊢ (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿 ↾s 𝐺))) |
21 | 18, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (Base‘(𝐿 ↾s 𝐺))) |
22 | | eqidd 2737 |
. . . . . . . . 9
⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)) |
23 | 22, 18 | srasca 21175 |
. . . . . . . 8
⊢ (𝜑 → (𝐿 ↾s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))) |
24 | 23 | fveq2d 6908 |
. . . . . . 7
⊢ (𝜑 → (Base‘(𝐿 ↾s 𝐺)) =
(Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))) |
25 | 21, 24 | eqtr2d 2777 |
. . . . . 6
⊢ (𝜑 →
(Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺) |
26 | 25 | oveq1d 7444 |
. . . . 5
⊢ (𝜑 →
((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺 ↑m 𝐵)) |
27 | 9 | crngringd 20239 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ Ring) |
28 | 27 | ringcmnd 20273 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ CMnd) |
29 | 28 | cmnmndd 19818 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Mnd) |
30 | | subrgsubg 20569 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿)) |
31 | 12, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝐿)) |
32 | 6 | subg0cl 19148 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (SubGrp‘𝐿) →
(0g‘𝐿)
∈ 𝐺) |
33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐿) ∈ 𝐺) |
34 | 19, 4, 6 | ress0g 18771 |
. . . . . . . . 9
⊢ ((𝐿 ∈ Mnd ∧
(0g‘𝐿)
∈ 𝐺 ∧ 𝐺 ⊆ (Base‘𝐿)) →
(0g‘𝐿) =
(0g‘(𝐿
↾s 𝐺))) |
35 | 29, 33, 18, 34 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝐿) = (0g‘(𝐿 ↾s 𝐺))) |
36 | 23 | fveq2d 6908 |
. . . . . . . 8
⊢ (𝜑 →
(0g‘(𝐿
↾s 𝐺)) =
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))) |
37 | 35, 36 | eqtr2d 2777 |
. . . . . . 7
⊢ (𝜑 →
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘𝐿)) |
38 | 37 | breq2d 5153 |
. . . . . 6
⊢ (𝜑 → (𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g‘𝐿))) |
39 | | eqid 2736 |
. . . . . . . . 9
⊢
((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺) |
40 | | fldextrspunlsp.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
41 | 40 | mptexd 7242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)) ∈ V) |
42 | 39 | sralmod 21186 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg
‘𝐿)‘𝐺) ∈ LMod) |
43 | 12, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod) |
44 | 39, 41, 8, 43, 18 | gsumsra 33035 |
. . . . . . . 8
⊢ (𝜑 → (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) |
45 | 22, 18 | sravsca 21177 |
. . . . . . . . . . 11
⊢ (𝜑 → (.r‘𝐿) = (
·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))) |
46 | 45 | oveqd 7446 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑎‘𝑣)(.r‘𝐿)𝑣) = ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣)) |
47 | 46 | mpteq2dv 5242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)) = (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣))) |
48 | 47 | oveq2d 7445 |
. . . . . . . 8
⊢ (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) |
49 | 44, 48 | eqtr2d 2777 |
. . . . . . 7
⊢ (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) |
50 | 49 | eqeq2d 2747 |
. . . . . 6
⊢ (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) |
51 | 38, 50 | anbi12d 632 |
. . . . 5
⊢ (𝜑 → ((𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))))) |
52 | 26, 51 | rexeqbidv 3346 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))))) |
53 | | eqid 2736 |
. . . . 5
⊢
(LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺)) |
54 | | eqid 2736 |
. . . . 5
⊢
(Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺)) |
55 | | eqid 2736 |
. . . . 5
⊢
(Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg
‘𝐿)‘𝐺))) |
56 | | eqid 2736 |
. . . . 5
⊢
(Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)) |
57 | | eqid 2736 |
. . . . 5
⊢
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) =
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) |
58 | | eqid 2736 |
. . . . 5
⊢ (
·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺)) |
59 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹)) |
60 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹)) |
61 | 59, 60 | lbsss 21068 |
. . . . . . . . 9
⊢ (𝐵 ∈
(LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg
‘𝐽)‘𝐹))) |
62 | 40, 61 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ (Base‘((subringAlg
‘𝐽)‘𝐹))) |
63 | 4 | subrgss 20564 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
64 | 15, 63 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
65 | | fldextrspunfld.j |
. . . . . . . . . . 11
⊢ 𝐽 = (𝐿 ↾s 𝐻) |
66 | 65, 4 | ressbas2 17279 |
. . . . . . . . . 10
⊢ (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽)) |
67 | 64, 66 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 = (Base‘𝐽)) |
68 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)) |
69 | | fldextrspunfld.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
70 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐽) =
(Base‘𝐽) |
71 | 70 | sdrgss 20786 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽)) |
72 | 69, 71 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐽)) |
73 | 68, 72 | srabase 21169 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐽) = (Base‘((subringAlg
‘𝐽)‘𝐹))) |
74 | 67, 73 | eqtrd 2776 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹))) |
75 | 62, 74 | sseqtrrd 4020 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝐻) |
76 | 75, 64 | sstrd 3993 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (Base‘𝐿)) |
77 | 22, 18 | srabase 21169 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐿) = (Base‘((subringAlg
‘𝐿)‘𝐺))) |
78 | 76, 77 | sseqtrd 4019 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ (Base‘((subringAlg
‘𝐿)‘𝐺))) |
79 | 53, 54, 55, 56, 57, 58, 43, 78 | ellspds 33383 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg
‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)( ·𝑠
‘((subringAlg ‘𝐿)‘𝐺))𝑣)))))) |
80 | | fldextrspunfld.k |
. . . . . . 7
⊢ 𝐾 = (𝐿 ↾s 𝐹) |
81 | | fldextrspunfld.i |
. . . . . . 7
⊢ 𝐼 = (𝐿 ↾s 𝐺) |
82 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐿 ∈ Field) |
83 | | fldextrspunfld.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
84 | 83 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼)) |
85 | 69 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽)) |
86 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿)) |
87 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿)) |
88 | | fldextrspunlsp.e |
. . . . . . 7
⊢ 𝐸 = (𝐿 ↾s 𝐶) |
89 | 40 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
90 | | fldextrspunlsp.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
91 | 90 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝐵 ∈ Fin) |
92 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝑝 ∈ (𝐺 ↑m 𝐻)) |
93 | 87, 86, 92 | elmaprd 32678 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝑝:𝐻⟶𝐺) |
94 | | simprl 771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝑝 finSupp (0g‘𝐿)) |
95 | | simprr 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)))) |
96 | | fveq2 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑝‘𝑓) = (𝑝‘ℎ)) |
97 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → 𝑓 = ℎ) |
98 | 96, 97 | oveq12d 7447 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑝‘𝑓)(.r‘𝐿)𝑓) = ((𝑝‘ℎ)(.r‘𝐿)ℎ)) |
99 | 98 | cbvmptv 5253 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)) = (ℎ ∈ 𝐻 ↦ ((𝑝‘ℎ)(.r‘𝐿)ℎ)) |
100 | 99 | oveq2i 7440 |
. . . . . . . 8
⊢ (𝐿 Σg
(𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑝‘ℎ)(.r‘𝐿)ℎ))) |
101 | 95, 100 | eqtrdi 2792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑝‘ℎ)(.r‘𝐿)ℎ)))) |
102 | 80, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101 | fldextrspunlsplem 33708 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐺 ↑m 𝐻)) ∧ (𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) |
103 | 102 | r19.29an 3157 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) |
104 | | breq1 5144 |
. . . . . . . 8
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → (𝑝 finSupp (0g‘𝐿) ↔ (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) finSupp (0g‘𝐿))) |
105 | | fveq1 6903 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → (𝑝‘𝑓) = ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)) |
106 | 105 | oveq1d 7444 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → ((𝑝‘𝑓)(.r‘𝐿)𝑓) = (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)) |
107 | 106 | mpteq2dv 5242 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)) = (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))) |
108 | 107 | oveq2d 7445 |
. . . . . . . . 9
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)))) |
109 | 108 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → (𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))))) |
110 | 104, 109 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) → ((𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)))) ↔ ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)))))) |
111 | 10 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿)) |
112 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿)) |
113 | 40 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
114 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿)) |
115 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → 𝑎 ∈ (𝐺 ↑m 𝐵)) |
116 | 113, 114,
115 | elmaprd 32678 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → 𝑎:𝐵⟶𝐺) |
117 | 116 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ 𝐻) → 𝑎:𝐵⟶𝐺) |
118 | 117 | ffvelcdmda 7102 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ 𝐻) ∧ 𝑔 ∈ 𝐵) → (𝑎‘𝑔) ∈ 𝐺) |
119 | 33 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ 𝐻) ∧ ¬ 𝑔 ∈ 𝐵) → (0g‘𝐿) ∈ 𝐺) |
120 | 118, 119 | ifclda 4559 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ 𝐻) → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) ∈ 𝐺) |
121 | 120 | fmpttd 7133 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))):𝐻⟶𝐺) |
122 | 111, 112,
121 | elmapdd 8877 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) ∈ (𝐺 ↑m 𝐻)) |
123 | | fvexd 6919 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → (0g‘𝐿) ∈ V) |
124 | 121 | ffund 6738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → Fun (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))) |
125 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → 𝑎 finSupp (0g‘𝐿)) |
126 | 116 | ffnd 6735 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → 𝑎 Fn 𝐵) |
127 | 126 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → 𝑎 Fn 𝐵) |
128 | 40 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
129 | | fvexd 6919 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → (0g‘𝐿) ∈ V) |
130 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ 𝐵) |
131 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) |
132 | 131 | eldifbd 3963 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g‘𝐿))) |
133 | 130, 132 | eldifd 3961 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) |
134 | 127, 128,
129, 133 | fvdifsupp 8192 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑔 ∈ 𝐵) → (𝑎‘𝑔) = (0g‘𝐿)) |
135 | | eqidd 2737 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ ¬ 𝑔 ∈ 𝐵) → (0g‘𝐿) = (0g‘𝐿)) |
136 | 134, 135 | ifeqda 4560 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) = (0g‘𝐿)) |
137 | 136, 112 | suppss2 8221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) supp (0g‘𝐿)) ⊆ (𝑎 supp (0g‘𝐿))) |
138 | 122, 123,
124, 125, 137 | fsuppsssuppgd 9418 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) finSupp (0g‘𝐿)) |
139 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) = (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) |
140 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓) |
141 | | suppssdm 8198 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 supp (0g‘𝐿)) ⊆ dom 𝑎 |
142 | 116 | fdmd 6744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) → dom 𝑎 = 𝐵) |
143 | 142 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → dom 𝑎 = 𝐵) |
144 | 141, 143 | sseqtrid 4025 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑎 supp (0g‘𝐿)) ⊆ 𝐵) |
145 | 144 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) → 𝑓 ∈ 𝐵) |
146 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → 𝑓 ∈ 𝐵) |
147 | 140, 146 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 ∈ 𝐵) |
148 | 147 | iftrued 4532 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) = (𝑎‘𝑔)) |
149 | | fveq2 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑓 → (𝑎‘𝑔) = (𝑎‘𝑓)) |
150 | 149 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → (𝑎‘𝑔) = (𝑎‘𝑓)) |
151 | 148, 150 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) = (𝑎‘𝑓)) |
152 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐵 ⊆ 𝐻) |
153 | 144, 152 | sstrd 3993 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑎 supp (0g‘𝐿)) ⊆ 𝐻) |
154 | 153 | sselda 3982 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) → 𝑓 ∈ 𝐻) |
155 | | fvexd 6919 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) → (𝑎‘𝑓) ∈ V) |
156 | 139, 151,
154, 155 | fvmptd2 7022 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) → ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓) = (𝑎‘𝑓)) |
157 | 156 | oveq1d 7444 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) → (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓) = ((𝑎‘𝑓)(.r‘𝐿)𝑓)) |
158 | 157 | mpteq2dva 5240 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑓)(.r‘𝐿)𝑓))) |
159 | | fveq2 6904 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑣 → (𝑎‘𝑓) = (𝑎‘𝑣)) |
160 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑣 → 𝑓 = 𝑣) |
161 | 159, 160 | oveq12d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑣 → ((𝑎‘𝑓)(.r‘𝐿)𝑓) = ((𝑎‘𝑣)(.r‘𝐿)𝑣)) |
162 | 161 | cbvmptv 5253 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑓)(.r‘𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)) |
163 | 158, 162 | eqtrdi 2792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))) |
164 | 163 | oveq2d 7445 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) |
165 | 28 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐿 ∈ CMnd) |
166 | 13 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐻 ∈ (SubDRing‘𝐿)) |
167 | | eleq1w 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑓 → (𝑔 ∈ 𝐵 ↔ 𝑓 ∈ 𝐵)) |
168 | 167, 149 | ifbieq1d 4548 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) = if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿))) |
169 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) |
170 | 169 | eldifad 3962 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑓 ∈ 𝐻) |
171 | | fvexd 6919 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → (𝑎‘𝑓) ∈ V) |
172 | | fvexd 6919 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → (0g‘𝐿) ∈ V) |
173 | 171, 172 | ifcld 4570 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿)) ∈ V) |
174 | 139, 168,
170, 173 | fvmptd3 7037 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓) = if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿))) |
175 | 174 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓) = (if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿))(.r‘𝐿)𝑓)) |
176 | 126 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → 𝑎 Fn 𝐵) |
177 | 40 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
178 | | fvexd 6919 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → (0g‘𝐿) ∈ V) |
179 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → 𝑓 ∈ 𝐵) |
180 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) |
181 | 180 | eldifbd 3963 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g‘𝐿))) |
182 | 179, 181 | eldifd 3961 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) |
183 | 176, 177,
178, 182 | fvdifsupp 8192 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ 𝑓 ∈ 𝐵) → (𝑎‘𝑓) = (0g‘𝐿)) |
184 | | eqidd 2737 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) ∧ ¬ 𝑓 ∈ 𝐵) → (0g‘𝐿) = (0g‘𝐿)) |
185 | 183, 184 | ifeqda 4560 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿)) = (0g‘𝐿)) |
186 | 185 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → (if(𝑓 ∈ 𝐵, (𝑎‘𝑓), (0g‘𝐿))(.r‘𝐿)𝑓) = ((0g‘𝐿)(.r‘𝐿)𝑓)) |
187 | 27 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → 𝐿 ∈ Ring) |
188 | 166, 14, 63 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐻 ⊆ (Base‘𝐿)) |
189 | 188 | ssdifssd 4146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐻 ∖ (𝑎 supp (0g‘𝐿))) ⊆ (Base‘𝐿)) |
190 | 189 | sselda 3982 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑓 ∈ (Base‘𝐿)) |
191 | 4, 5, 6, 187, 190 | ringlzd 20284 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → ((0g‘𝐿)(.r‘𝐿)𝑓) = (0g‘𝐿)) |
192 | 175, 186,
191 | 3eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g‘𝐿)))) → (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓) = (0g‘𝐿)) |
193 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝑎 finSupp (0g‘𝐿)) |
194 | 193 | fsuppimpd 9405 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑎 supp (0g‘𝐿)) ∈ Fin) |
195 | 27 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ 𝐻) → 𝐿 ∈ Ring) |
196 | 18 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) ∧ 𝑔 ∈ 𝐵) → 𝐺 ⊆ (Base‘𝐿)) |
197 | 116 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) → 𝑎:𝐵⟶𝐺) |
198 | 197 | ffvelcdmda 7102 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) ∧ 𝑔 ∈ 𝐵) → (𝑎‘𝑔) ∈ 𝐺) |
199 | 196, 198 | sseldd 3983 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) ∧ 𝑔 ∈ 𝐵) → (𝑎‘𝑔) ∈ (Base‘𝐿)) |
200 | 18, 33 | sseldd 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0g‘𝐿) ∈ (Base‘𝐿)) |
201 | 200 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) ∧ ¬ 𝑔 ∈ 𝐵) → (0g‘𝐿) ∈ (Base‘𝐿)) |
202 | 199, 201 | ifclda 4559 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑔 ∈ 𝐻) → if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)) ∈ (Base‘𝐿)) |
203 | 202 | fmpttd 7133 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))):𝐻⟶(Base‘𝐿)) |
204 | 203 | ffvelcdmda 7102 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ 𝐻) → ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓) ∈ (Base‘𝐿)) |
205 | 188 | sselda 3982 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ 𝐻) → 𝑓 ∈ (Base‘𝐿)) |
206 | 4, 5, 195, 204, 205 | ringcld 20252 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑓 ∈ 𝐻) → (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓) ∈ (Base‘𝐿)) |
207 | 4, 6, 165, 166, 192, 194, 206, 153 | gsummptres2 33041 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g‘𝐿)) ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)))) |
208 | 113 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
209 | 126 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑎 Fn 𝐵) |
210 | 208 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
211 | | fvexd 6919 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → (0g‘𝐿) ∈ V) |
212 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) |
213 | 209, 210,
211, 212 | fvdifsupp 8192 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → (𝑎‘𝑣) = (0g‘𝐿)) |
214 | 213 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → ((𝑎‘𝑣)(.r‘𝐿)𝑣) = ((0g‘𝐿)(.r‘𝐿)𝑣)) |
215 | 27 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → 𝐿 ∈ Ring) |
216 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝐵 ⊆ (Base‘𝐿)) |
217 | 216 | ssdifssd 4146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐵 ∖ (𝑎 supp (0g‘𝐿))) ⊆ (Base‘𝐿)) |
218 | 217 | sselda 3982 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → 𝑣 ∈ (Base‘𝐿)) |
219 | 4, 5, 6, 215, 218 | ringlzd 20284 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → ((0g‘𝐿)(.r‘𝐿)𝑣) = (0g‘𝐿)) |
220 | 214, 219 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g‘𝐿)))) → ((𝑎‘𝑣)(.r‘𝐿)𝑣) = (0g‘𝐿)) |
221 | 27 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → 𝐿 ∈ Ring) |
222 | 18 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → 𝐺 ⊆ (Base‘𝐿)) |
223 | 116 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → 𝑎:𝐵⟶𝐺) |
224 | 223 | ffvelcdmda 7102 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → (𝑎‘𝑣) ∈ 𝐺) |
225 | 222, 224 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → (𝑎‘𝑣) ∈ (Base‘𝐿)) |
226 | 216 | sselda 3982 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ (Base‘𝐿)) |
227 | 4, 5, 221, 225, 226 | ringcld 20252 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑣 ∈ 𝐵) → ((𝑎‘𝑣)(.r‘𝐿)𝑣) ∈ (Base‘𝐿)) |
228 | 4, 6, 165, 208, 220, 194, 227, 144 | gsummptres2 33041 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g‘𝐿)) ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) |
229 | 164, 207,
228 | 3eqtr4d 2786 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) |
230 | 229 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) → (𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) |
231 | 230 | biimpar 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ 𝑎 finSupp (0g‘𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)))) |
232 | 231 | anasss 466 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓)))) |
233 | 138, 232 | jca 511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → ((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿))) finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ (((𝑔 ∈ 𝐻 ↦ if(𝑔 ∈ 𝐵, (𝑎‘𝑔), (0g‘𝐿)))‘𝑓)(.r‘𝐿)𝑓))))) |
234 | 110, 122,
233 | rspcedvdw 3624 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐺 ↑m 𝐵)) ∧ (𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) |
235 | 234 | r19.29an 3157 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓))))) |
236 | 103, 235 | impbida 801 |
. . . 4
⊢ (𝜑 → (∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣 ∈ 𝐵 ↦ ((𝑎‘𝑣)(.r‘𝐿)𝑣)))))) |
237 | 52, 79, 236 | 3bitr4rd 312 |
. . 3
⊢ (𝜑 → (∃𝑝 ∈ (𝐺 ↑m 𝐻)(𝑝 finSupp (0g‘𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑝‘𝑓)(.r‘𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg
‘𝐿)‘𝐺))‘𝐵))) |
238 | 3, 16, 237 | 3bitrd 305 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ((LSpan‘((subringAlg
‘𝐿)‘𝐺))‘𝐵))) |
239 | 238 | eqrdv 2734 |
1
⊢ (𝜑 → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)) |