Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsp Structured version   Visualization version   GIF version

Theorem fldextrspunlsp 33679
Description: Lemma for fldextrspunfld 33681. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fldextrspunlsp (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))

Proof of Theorem fldextrspunlsp
Dummy variables 𝑎 𝑓 𝑔 𝑝 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunlsp.c . . . . 5 𝐶 = (𝑁‘(𝐺𝐻))
21a1i 11 . . . 4 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
32eleq2d 2817 . . 3 (𝜑 → (𝑥𝐶𝑥 ∈ (𝑁‘(𝐺𝐻))))
4 eqid 2731 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2731 . . . 4 (.r𝐿) = (.r𝐿)
6 eqid 2731 . . . 4 (0g𝐿) = (0g𝐿)
7 fldextrspunlsp.n . . . 4 𝑁 = (RingSpan‘𝐿)
8 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
98fldcrngd 20652 . . . 4 (𝜑𝐿 ∈ CRing)
10 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
11 sdrgsubrg 20701 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1210, 11syl 17 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐿))
13 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
14 sdrgsubrg 20701 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
1513, 14syl 17 . . . 4 (𝜑𝐻 ∈ (SubRing‘𝐿))
164, 5, 6, 7, 9, 12, 15elrgspnsubrun 33208 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘(𝐺𝐻)) ↔ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))))
174subrgss 20482 . . . . . . . . 9 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
1812, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
19 eqid 2731 . . . . . . . . 9 (𝐿s 𝐺) = (𝐿s 𝐺)
2019, 4ressbas2 17144 . . . . . . . 8 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿s 𝐺)))
2118, 20syl 17 . . . . . . 7 (𝜑𝐺 = (Base‘(𝐿s 𝐺)))
22 eqidd 2732 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
2322, 18srasca 21109 . . . . . . . 8 (𝜑 → (𝐿s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)))
2423fveq2d 6821 . . . . . . 7 (𝜑 → (Base‘(𝐿s 𝐺)) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
2521, 24eqtr2d 2767 . . . . . 6 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺)
2625oveq1d 7356 . . . . 5 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺m 𝐵))
279crngringd 20159 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
2827ringcmnd 20197 . . . . . . . . . 10 (𝜑𝐿 ∈ CMnd)
2928cmnmndd 19711 . . . . . . . . 9 (𝜑𝐿 ∈ Mnd)
30 subrgsubg 20487 . . . . . . . . . . 11 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
3112, 30syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubGrp‘𝐿))
326subg0cl 19042 . . . . . . . . . 10 (𝐺 ∈ (SubGrp‘𝐿) → (0g𝐿) ∈ 𝐺)
3331, 32syl 17 . . . . . . . . 9 (𝜑 → (0g𝐿) ∈ 𝐺)
3419, 4, 6ress0g 18665 . . . . . . . . 9 ((𝐿 ∈ Mnd ∧ (0g𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3529, 33, 18, 34syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3623fveq2d 6821 . . . . . . . 8 (𝜑 → (0g‘(𝐿s 𝐺)) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
3735, 36eqtr2d 2767 . . . . . . 7 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g𝐿))
3837breq2d 5098 . . . . . 6 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g𝐿)))
39 eqid 2731 . . . . . . . . 9 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
40 fldextrspunlsp.1 . . . . . . . . . 10 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
4140mptexd 7153 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) ∈ V)
4239sralmod 21116 . . . . . . . . . 10 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4312, 42syl 17 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4439, 41, 8, 43, 18gsumsra 33019 . . . . . . . 8 (𝜑 → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
4522, 18sravsca 21110 . . . . . . . . . . 11 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)))
4645oveqd 7358 . . . . . . . . . 10 (𝜑 → ((𝑎𝑣)(.r𝐿)𝑣) = ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))
4746mpteq2dv 5180 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) = (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))
4847oveq2d 7357 . . . . . . . 8 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))
4944, 48eqtr2d 2767 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
5049eqeq2d 2742 . . . . . 6 (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
5138, 50anbi12d 632 . . . . 5 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
5226, 51rexeqbidv 3313 . . . 4 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
53 eqid 2731 . . . . 5 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
54 eqid 2731 . . . . 5 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
55 eqid 2731 . . . . 5 (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
56 eqid 2731 . . . . 5 (Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))
57 eqid 2731 . . . . 5 (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
58 eqid 2731 . . . . 5 ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))
59 eqid 2731 . . . . . . . . . 10 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
60 eqid 2731 . . . . . . . . . 10 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
6159, 60lbsss 21006 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
6240, 61syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
634subrgss 20482 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6415, 63syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (Base‘𝐿))
65 fldextrspunfld.j . . . . . . . . . . 11 𝐽 = (𝐿s 𝐻)
6665, 4ressbas2 17144 . . . . . . . . . 10 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6764, 66syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘𝐽))
68 eqidd 2732 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
69 fldextrspunfld.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐽))
70 eqid 2731 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
7170sdrgss 20703 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
7269, 71syl 17 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐽))
7368, 72srabase 21106 . . . . . . . . 9 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7467, 73eqtrd 2766 . . . . . . . 8 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7562, 74sseqtrrd 3967 . . . . . . 7 (𝜑𝐵𝐻)
7675, 64sstrd 3940 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝐿))
7722, 18srabase 21106 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
7876, 77sseqtrd 3966 . . . . 5 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
7953, 54, 55, 56, 57, 58, 43, 78ellspds 33325 . . . 4 (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))))
80 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
81 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
828ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐿 ∈ Field)
83 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼))
8569ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽))
8610ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿))
8713ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿))
88 fldextrspunlsp.e . . . . . . 7 𝐸 = (𝐿s 𝐶)
8940ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
90 fldextrspunlsp.2 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
9190ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ Fin)
92 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 ∈ (𝐺m 𝐻))
9387, 86, 92elmaprd 32653 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝:𝐻𝐺)
94 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 finSupp (0g𝐿))
95 simprr 772 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))
96 fveq2 6817 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
97 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
9896, 97oveq12d 7359 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓)(.r𝐿)𝑓) = ((𝑝)(.r𝐿)))
9998cbvmptv 5190 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑝)(.r𝐿)))
10099oveq2i 7352 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿))))
10195, 100eqtrdi 2782 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿)))))
10280, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101fldextrspunlsplem 33678 . . . . . 6 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
103102r19.29an 3136 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
104 breq1 5089 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝 finSupp (0g𝐿) ↔ (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿)))
105 fveq1 6816 . . . . . . . . . . . 12 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝𝑓) = ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓))
106105oveq1d 7356 . . . . . . . . . . 11 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝𝑓)(.r𝐿)𝑓) = (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))
107106mpteq2dv 5180 . . . . . . . . . 10 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))
108107oveq2d 7357 . . . . . . . . 9 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
109108eqeq2d 2742 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
110104, 109anbi12d 632 . . . . . . 7 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))))
11110ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿))
11213ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿))
11340adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
11410adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿))
115 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 ∈ (𝐺m 𝐵))
116113, 114, 115elmaprd 32653 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎:𝐵𝐺)
117116ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
118117ffvelcdmda 7012 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
11933ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ 𝐺)
120118, 119ifclda 4506 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ 𝐺)
121120fmpttd 7043 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻𝐺)
122111, 112, 121elmapdd 8760 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) ∈ (𝐺m 𝐻))
123 fvexd 6832 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (0g𝐿) ∈ V)
124121ffund 6650 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → Fun (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))))
125 simprl 770 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑎 finSupp (0g𝐿))
126116ffnd 6647 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 Fn 𝐵)
127126ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑎 Fn 𝐵)
12840ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
129 fvexd 6832 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (0g𝐿) ∈ V)
130 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔𝐵)
131 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
132131eldifbd 3910 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g𝐿)))
133130, 132eldifd 3908 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
134127, 128, 129, 133fvdifsupp 8096 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (𝑎𝑔) = (0g𝐿))
135 eqidd 2732 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑔𝐵) → (0g𝐿) = (0g𝐿))
136134, 135ifeqda 4507 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (0g𝐿))
137136, 112suppss2 8125 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) supp (0g𝐿)) ⊆ (𝑎 supp (0g𝐿)))
138122, 123, 124, 125, 137fsuppsssuppgd 9261 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿))
139 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))
140 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓)
141 suppssdm 8102 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 supp (0g𝐿)) ⊆ dom 𝑎
142116fdmd 6656 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → dom 𝑎 = 𝐵)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → dom 𝑎 = 𝐵)
144141, 143sseqtrid 3972 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐵)
145144sselda 3929 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐵)
146145adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑓𝐵)
147140, 146eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔𝐵)
148147iftrued 4478 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑔))
149 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝑎𝑔) = (𝑎𝑓))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → (𝑎𝑔) = (𝑎𝑓))
151148, 150eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑓))
15275ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵𝐻)
153144, 152sstrd 3940 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐻)
154153sselda 3929 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐻)
155 fvexd 6832 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (𝑎𝑓) ∈ V)
156139, 151, 154, 155fvmptd2 6932 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = (𝑎𝑓))
157156oveq1d 7356 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = ((𝑎𝑓)(.r𝐿)𝑓))
158157mpteq2dva 5179 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)))
159 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣 → (𝑎𝑓) = (𝑎𝑣))
160 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣𝑓 = 𝑣)
161159, 160oveq12d 7359 . . . . . . . . . . . . . . 15 (𝑓 = 𝑣 → ((𝑎𝑓)(.r𝐿)𝑓) = ((𝑎𝑣)(.r𝐿)𝑣))
162161cbvmptv 5190 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))
163158, 162eqtrdi 2782 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣)))
164163oveq2d 7357 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
16528ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐿 ∈ CMnd)
16613ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ∈ (SubDRing‘𝐿))
167 eleq1w 2814 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐵𝑓𝐵))
168167, 149ifbieq1d 4495 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
169 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
170169eldifad 3909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓𝐻)
171 fvexd 6832 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑓) ∈ V)
172 fvexd 6832 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
173171, 172ifcld 4517 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) ∈ V)
174139, 168, 170, 173fvmptd3 6947 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
175174oveq1d 7356 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓))
176126ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑎 Fn 𝐵)
17740ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
178 fvexd 6832 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (0g𝐿) ∈ V)
179 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓𝐵)
180 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
181180eldifbd 3910 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g𝐿)))
182179, 181eldifd 3908 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
183176, 177, 178, 182fvdifsupp 8096 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (𝑎𝑓) = (0g𝐿))
184 eqidd 2732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑓𝐵) → (0g𝐿) = (0g𝐿))
185183, 184ifeqda 4507 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) = (0g𝐿))
186185oveq1d 7356 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓) = ((0g𝐿)(.r𝐿)𝑓))
18727ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
188166, 14, 633syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ⊆ (Base‘𝐿))
189188ssdifssd 4092 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐻 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
190189sselda 3929 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (Base‘𝐿))
1914, 5, 6, 187, 190ringlzd 20208 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑓) = (0g𝐿))
192175, 186, 1913eqtrd 2770 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (0g𝐿))
193 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎 finSupp (0g𝐿))
194193fsuppimpd 9248 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ∈ Fin)
19527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝐿 ∈ Ring)
19618ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → 𝐺 ⊆ (Base‘𝐿))
197116ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
198197ffvelcdmda 7012 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
199196, 198sseldd 3930 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ (Base‘𝐿))
20018, 33sseldd 3930 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐿) ∈ (Base‘𝐿))
201200ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ (Base‘𝐿))
202199, 201ifclda 4506 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ (Base‘𝐿))
203202fmpttd 7043 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻⟶(Base‘𝐿))
204203ffvelcdmda 7012 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) ∈ (Base‘𝐿))
205188sselda 3929 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝑓 ∈ (Base‘𝐿))
2064, 5, 195, 204, 205ringcld 20173 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) ∈ (Base‘𝐿))
2074, 6, 165, 166, 192, 194, 206, 153gsummptres2 33025 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
208113adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
209126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑎 Fn 𝐵)
210208adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
211 fvexd 6832 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
212 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
213209, 210, 211, 212fvdifsupp 8096 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑣) = (0g𝐿))
214213oveq1d 7356 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = ((0g𝐿)(.r𝐿)𝑣))
21527ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
21676ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ⊆ (Base‘𝐿))
217216ssdifssd 4092 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐵 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
218217sselda 3929 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (Base‘𝐿))
2194, 5, 6, 215, 218ringlzd 20208 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑣) = (0g𝐿))
220214, 219eqtrd 2766 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = (0g𝐿))
22127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐿 ∈ Ring)
22218ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐺 ⊆ (Base‘𝐿))
223116adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎:𝐵𝐺)
224223ffvelcdmda 7012 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ 𝐺)
225222, 224sseldd 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ (Base‘𝐿))
226216sselda 3929 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝑣 ∈ (Base‘𝐿))
2274, 5, 221, 225, 226ringcld 20173 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → ((𝑎𝑣)(.r𝐿)𝑣) ∈ (Base‘𝐿))
2284, 6, 165, 208, 220, 194, 227, 144gsummptres2 33025 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
229164, 207, 2283eqtr4d 2776 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
230229eqeq2d 2742 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
231230biimpar 477 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
232231anasss 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
233138, 232jca 511 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
234110, 122, 233rspcedvdw 3575 . . . . . 6 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
235234r19.29an 3136 . . . . 5 ((𝜑 ∧ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
236103, 235impbida 800 . . . 4 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
23752, 79, 2363bitr4rd 312 . . 3 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
2383, 16, 2373bitrd 305 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
239238eqrdv 2729 1 (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  wss 3897  ifcif 4470   class class class wbr 5086  cmpt 5167  dom cdm 5611   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  Basecbs 17115  s cress 17136  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  SubGrpcsubg 19028  CMndccmn 19687  Ringcrg 20146  SubRingcsubrg 20479  RingSpancrgspn 20520  Fieldcfield 20640  SubDRingcsdrg 20696  LModclmod 20788  LSpanclspn 20899  LBasisclbs 21003  subringAlg csra 21100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-r1 9652  df-rank 9653  df-card 9827  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-s2 14750  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-nzr 20423  df-subrng 20456  df-subrg 20480  df-rgspn 20521  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-lbs 21004  df-sra 21102  df-rgmod 21103  df-cnfld 21287  df-zring 21379  df-dsmm 21664  df-frlm 21679  df-uvc 21715  df-ind 32824
This theorem is referenced by:  fldextrspunlem1  33680
  Copyright terms: Public domain W3C validator