Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsp Structured version   Visualization version   GIF version

Theorem fldextrspunlsp 33675
Description: Lemma for fldextrspunfld 33677. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fldextrspunlsp (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))

Proof of Theorem fldextrspunlsp
Dummy variables 𝑎 𝑓 𝑔 𝑝 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunlsp.c . . . . 5 𝐶 = (𝑁‘(𝐺𝐻))
21a1i 11 . . . 4 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
32eleq2d 2815 . . 3 (𝜑 → (𝑥𝐶𝑥 ∈ (𝑁‘(𝐺𝐻))))
4 eqid 2730 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2730 . . . 4 (.r𝐿) = (.r𝐿)
6 eqid 2730 . . . 4 (0g𝐿) = (0g𝐿)
7 fldextrspunlsp.n . . . 4 𝑁 = (RingSpan‘𝐿)
8 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
98fldcrngd 20657 . . . 4 (𝜑𝐿 ∈ CRing)
10 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
11 sdrgsubrg 20706 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1210, 11syl 17 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐿))
13 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
14 sdrgsubrg 20706 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
1513, 14syl 17 . . . 4 (𝜑𝐻 ∈ (SubRing‘𝐿))
164, 5, 6, 7, 9, 12, 15elrgspnsubrun 33206 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘(𝐺𝐻)) ↔ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))))
174subrgss 20487 . . . . . . . . 9 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
1812, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
19 eqid 2730 . . . . . . . . 9 (𝐿s 𝐺) = (𝐿s 𝐺)
2019, 4ressbas2 17214 . . . . . . . 8 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘(𝐿s 𝐺)))
2118, 20syl 17 . . . . . . 7 (𝜑𝐺 = (Base‘(𝐿s 𝐺)))
22 eqidd 2731 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
2322, 18srasca 21093 . . . . . . . 8 (𝜑 → (𝐿s 𝐺) = (Scalar‘((subringAlg ‘𝐿)‘𝐺)))
2423fveq2d 6864 . . . . . . 7 (𝜑 → (Base‘(𝐿s 𝐺)) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
2521, 24eqtr2d 2766 . . . . . 6 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = 𝐺)
2625oveq1d 7404 . . . . 5 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵) = (𝐺m 𝐵))
279crngringd 20161 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
2827ringcmnd 20199 . . . . . . . . . 10 (𝜑𝐿 ∈ CMnd)
2928cmnmndd 19740 . . . . . . . . 9 (𝜑𝐿 ∈ Mnd)
30 subrgsubg 20492 . . . . . . . . . . 11 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
3112, 30syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubGrp‘𝐿))
326subg0cl 19072 . . . . . . . . . 10 (𝐺 ∈ (SubGrp‘𝐿) → (0g𝐿) ∈ 𝐺)
3331, 32syl 17 . . . . . . . . 9 (𝜑 → (0g𝐿) ∈ 𝐺)
3419, 4, 6ress0g 18695 . . . . . . . . 9 ((𝐿 ∈ Mnd ∧ (0g𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3529, 33, 18, 34syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝐿) = (0g‘(𝐿s 𝐺)))
3623fveq2d 6864 . . . . . . . 8 (𝜑 → (0g‘(𝐿s 𝐺)) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))))
3735, 36eqtr2d 2766 . . . . . . 7 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g𝐿))
3837breq2d 5121 . . . . . 6 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↔ 𝑎 finSupp (0g𝐿)))
39 eqid 2730 . . . . . . . . 9 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
40 fldextrspunlsp.1 . . . . . . . . . 10 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
4140mptexd 7200 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) ∈ V)
4239sralmod 21100 . . . . . . . . . 10 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4312, 42syl 17 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
4439, 41, 8, 43, 18gsumsra 32993 . . . . . . . 8 (𝜑 → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
4522, 18sravsca 21094 . . . . . . . . . . 11 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)))
4645oveqd 7406 . . . . . . . . . 10 (𝜑 → ((𝑎𝑣)(.r𝐿)𝑣) = ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))
4746mpteq2dv 5203 . . . . . . . . 9 (𝜑 → (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)) = (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))
4847oveq2d 7405 . . . . . . . 8 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))
4944, 48eqtr2d 2766 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
5049eqeq2d 2741 . . . . . 6 (𝜑 → (𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
5138, 50anbi12d 632 . . . . 5 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
5226, 51rexeqbidv 3322 . . . 4 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
53 eqid 2730 . . . . 5 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
54 eqid 2730 . . . . 5 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
55 eqid 2730 . . . . 5 (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
56 eqid 2730 . . . . 5 (Scalar‘((subringAlg ‘𝐿)‘𝐺)) = (Scalar‘((subringAlg ‘𝐿)‘𝐺))
57 eqid 2730 . . . . 5 (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) = (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺)))
58 eqid 2730 . . . . 5 ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺)) = ( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))
59 eqid 2730 . . . . . . . . . 10 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
60 eqid 2730 . . . . . . . . . 10 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
6159, 60lbsss 20990 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
6240, 61syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
634subrgss 20487 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6415, 63syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (Base‘𝐿))
65 fldextrspunfld.j . . . . . . . . . . 11 𝐽 = (𝐿s 𝐻)
6665, 4ressbas2 17214 . . . . . . . . . 10 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6764, 66syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘𝐽))
68 eqidd 2731 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
69 fldextrspunfld.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐽))
70 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
7170sdrgss 20708 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
7269, 71syl 17 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐽))
7368, 72srabase 21090 . . . . . . . . 9 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7467, 73eqtrd 2765 . . . . . . . 8 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
7562, 74sseqtrrd 3986 . . . . . . 7 (𝜑𝐵𝐻)
7675, 64sstrd 3959 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝐿))
7722, 18srabase 21090 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
7876, 77sseqtrd 3985 . . . . 5 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
7953, 54, 55, 56, 57, 58, 43, 78ellspds 33345 . . . 4 (𝜑 → (𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ↑m 𝐵)(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐿)‘𝐺))) ∧ 𝑥 = (((subringAlg ‘𝐿)‘𝐺) Σg (𝑣𝐵 ↦ ((𝑎𝑣)( ·𝑠 ‘((subringAlg ‘𝐿)‘𝐺))𝑣))))))
80 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
81 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
828ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐿 ∈ Field)
83 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐼))
8569ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐹 ∈ (SubDRing‘𝐽))
8610ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐺 ∈ (SubDRing‘𝐿))
8713ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐻 ∈ (SubDRing‘𝐿))
88 fldextrspunlsp.e . . . . . . 7 𝐸 = (𝐿s 𝐶)
8940ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
90 fldextrspunlsp.2 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
9190ad2antrr 726 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝐵 ∈ Fin)
92 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 ∈ (𝐺m 𝐻))
9387, 86, 92elmaprd 32609 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝:𝐻𝐺)
94 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑝 finSupp (0g𝐿))
95 simprr 772 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))
96 fveq2 6860 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
97 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
9896, 97oveq12d 7407 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓)(.r𝐿)𝑓) = ((𝑝)(.r𝐿)))
9998cbvmptv 5213 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑝)(.r𝐿)))
10099oveq2i 7400 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿))))
10195, 100eqtrdi 2781 . . . . . . 7 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → 𝑥 = (𝐿 Σg (𝐻 ↦ ((𝑝)(.r𝐿)))))
10280, 81, 65, 82, 84, 85, 86, 87, 7, 1, 88, 89, 91, 93, 94, 101fldextrspunlsplem 33674 . . . . . 6 (((𝜑𝑝 ∈ (𝐺m 𝐻)) ∧ (𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
103102r19.29an 3138 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
104 breq1 5112 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝 finSupp (0g𝐿) ↔ (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿)))
105 fveq1 6859 . . . . . . . . . . . 12 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑝𝑓) = ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓))
106105oveq1d 7404 . . . . . . . . . . 11 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝𝑓)(.r𝐿)𝑓) = (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))
107106mpteq2dv 5203 . . . . . . . . . 10 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)) = (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))
108107oveq2d 7405 . . . . . . . . 9 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
109108eqeq2d 2741 . . . . . . . 8 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
110104, 109anbi12d 632 . . . . . . 7 (𝑝 = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) → ((𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))))
11110ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐺 ∈ (SubDRing‘𝐿))
11213ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝐻 ∈ (SubDRing‘𝐿))
11340adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
11410adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝐺 ∈ (SubDRing‘𝐿))
115 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 ∈ (𝐺m 𝐵))
116113, 114, 115elmaprd 32609 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎:𝐵𝐺)
117116ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
118117ffvelcdmda 7058 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
11933ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ 𝐺)
120118, 119ifclda 4526 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ 𝐺)
121120fmpttd 7089 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻𝐺)
122111, 112, 121elmapdd 8816 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) ∈ (𝐺m 𝐻))
123 fvexd 6875 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (0g𝐿) ∈ V)
124121ffund 6694 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → Fun (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))))
125 simprl 770 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑎 finSupp (0g𝐿))
126116ffnd 6691 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → 𝑎 Fn 𝐵)
127126ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑎 Fn 𝐵)
12840ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
129 fvexd 6875 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (0g𝐿) ∈ V)
130 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔𝐵)
131 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
132131eldifbd 3929 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → ¬ 𝑔 ∈ (𝑎 supp (0g𝐿)))
133130, 132eldifd 3927 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → 𝑔 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
134127, 128, 129, 133fvdifsupp 8152 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑔𝐵) → (𝑎𝑔) = (0g𝐿))
135 eqidd 2731 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑔𝐵) → (0g𝐿) = (0g𝐿))
136134, 135ifeqda 4527 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) ∧ 𝑔 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (0g𝐿))
137136, 112suppss2 8181 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) supp (0g𝐿)) ⊆ (𝑎 supp (0g𝐿)))
138122, 123, 124, 125, 137fsuppsssuppgd 9339 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿))
139 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) = (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))
140 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔 = 𝑓)
141 suppssdm 8158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 supp (0g𝐿)) ⊆ dom 𝑎
142116fdmd 6700 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝐺m 𝐵)) → dom 𝑎 = 𝐵)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → dom 𝑎 = 𝐵)
144141, 143sseqtrid 3991 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐵)
145144sselda 3948 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐵)
146145adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑓𝐵)
147140, 146eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → 𝑔𝐵)
148147iftrued 4498 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑔))
149 fveq2 6860 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝑎𝑔) = (𝑎𝑓))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → (𝑎𝑔) = (𝑎𝑓))
151148, 150eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) ∧ 𝑔 = 𝑓) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = (𝑎𝑓))
15275ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵𝐻)
153144, 152sstrd 3959 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ⊆ 𝐻)
154153sselda 3948 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → 𝑓𝐻)
155 fvexd 6875 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (𝑎𝑓) ∈ V)
156139, 151, 154, 155fvmptd2 6978 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = (𝑎𝑓))
157156oveq1d 7404 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝑎 supp (0g𝐿))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = ((𝑎𝑓)(.r𝐿)𝑓))
158157mpteq2dva 5202 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)))
159 fveq2 6860 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣 → (𝑎𝑓) = (𝑎𝑣))
160 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑣𝑓 = 𝑣)
161159, 160oveq12d 7407 . . . . . . . . . . . . . . 15 (𝑓 = 𝑣 → ((𝑎𝑓)(.r𝐿)𝑓) = ((𝑎𝑣)(.r𝐿)𝑣))
162161cbvmptv 5213 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))
163158, 162eqtrdi 2781 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)) = (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣)))
164163oveq2d 7405 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
16528ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐿 ∈ CMnd)
16613ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ∈ (SubDRing‘𝐿))
167 eleq1w 2812 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐵𝑓𝐵))
168167, 149ifbieq1d 4515 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
169 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
170169eldifad 3928 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓𝐻)
171 fvexd 6875 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑓) ∈ V)
172 fvexd 6875 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
173171, 172ifcld 4537 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) ∈ V)
174139, 168, 170, 173fvmptd3 6993 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) = if(𝑓𝐵, (𝑎𝑓), (0g𝐿)))
175174oveq1d 7404 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓))
176126ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑎 Fn 𝐵)
17740ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
178 fvexd 6875 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (0g𝐿) ∈ V)
179 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓𝐵)
180 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿))))
181180eldifbd 3929 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → ¬ 𝑓 ∈ (𝑎 supp (0g𝐿)))
182179, 181eldifd 3927 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → 𝑓 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
183176, 177, 178, 182fvdifsupp 8152 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ 𝑓𝐵) → (𝑎𝑓) = (0g𝐿))
184 eqidd 2731 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) ∧ ¬ 𝑓𝐵) → (0g𝐿) = (0g𝐿))
185183, 184ifeqda 4527 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → if(𝑓𝐵, (𝑎𝑓), (0g𝐿)) = (0g𝐿))
186185oveq1d 7404 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (if(𝑓𝐵, (𝑎𝑓), (0g𝐿))(.r𝐿)𝑓) = ((0g𝐿)(.r𝐿)𝑓))
18727ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
188166, 14, 633syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐻 ⊆ (Base‘𝐿))
189188ssdifssd 4112 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐻 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
190189sselda 3948 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → 𝑓 ∈ (Base‘𝐿))
1914, 5, 6, 187, 190ringlzd 20210 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑓) = (0g𝐿))
192175, 186, 1913eqtrd 2769 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓 ∈ (𝐻 ∖ (𝑎 supp (0g𝐿)))) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) = (0g𝐿))
193 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎 finSupp (0g𝐿))
194193fsuppimpd 9326 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑎 supp (0g𝐿)) ∈ Fin)
19527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝐿 ∈ Ring)
19618ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → 𝐺 ⊆ (Base‘𝐿))
197116ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → 𝑎:𝐵𝐺)
198197ffvelcdmda 7058 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ 𝐺)
199196, 198sseldd 3949 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ 𝑔𝐵) → (𝑎𝑔) ∈ (Base‘𝐿))
20018, 33sseldd 3949 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐿) ∈ (Base‘𝐿))
201200ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) ∧ ¬ 𝑔𝐵) → (0g𝐿) ∈ (Base‘𝐿))
202199, 201ifclda 4526 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑔𝐻) → if(𝑔𝐵, (𝑎𝑔), (0g𝐿)) ∈ (Base‘𝐿))
203202fmpttd 7089 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))):𝐻⟶(Base‘𝐿))
204203ffvelcdmda 7058 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓) ∈ (Base‘𝐿))
205188sselda 3948 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → 𝑓 ∈ (Base‘𝐿))
2064, 5, 195, 204, 205ringcld 20175 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑓𝐻) → (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓) ∈ (Base‘𝐿))
2074, 6, 165, 166, 192, 194, 206, 153gsummptres2 32999 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑓 ∈ (𝑎 supp (0g𝐿)) ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
208113adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
209126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑎 Fn 𝐵)
210208adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
211 fvexd 6875 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (0g𝐿) ∈ V)
212 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿))))
213209, 210, 211, 212fvdifsupp 8152 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → (𝑎𝑣) = (0g𝐿))
214213oveq1d 7404 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = ((0g𝐿)(.r𝐿)𝑣))
21527ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝐿 ∈ Ring)
21676ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝐵 ⊆ (Base‘𝐿))
217216ssdifssd 4112 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐵 ∖ (𝑎 supp (0g𝐿))) ⊆ (Base‘𝐿))
218217sselda 3948 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → 𝑣 ∈ (Base‘𝐿))
2194, 5, 6, 215, 218ringlzd 20210 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((0g𝐿)(.r𝐿)𝑣) = (0g𝐿))
220214, 219eqtrd 2765 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣 ∈ (𝐵 ∖ (𝑎 supp (0g𝐿)))) → ((𝑎𝑣)(.r𝐿)𝑣) = (0g𝐿))
22127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐿 ∈ Ring)
22218ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝐺 ⊆ (Base‘𝐿))
223116adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → 𝑎:𝐵𝐺)
224223ffvelcdmda 7058 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ 𝐺)
225222, 224sseldd 3949 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → (𝑎𝑣) ∈ (Base‘𝐿))
226216sselda 3948 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → 𝑣 ∈ (Base‘𝐿))
2274, 5, 221, 225, 226ringcld 20175 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑣𝐵) → ((𝑎𝑣)(.r𝐿)𝑣) ∈ (Base‘𝐿))
2284, 6, 165, 208, 220, 194, 227, 144gsummptres2 32999 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))) = (𝐿 Σg (𝑣 ∈ (𝑎 supp (0g𝐿)) ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
229164, 207, 2283eqtr4d 2775 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))
230229eqeq2d 2741 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) → (𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))) ↔ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))))
231230biimpar 477 . . . . . . . . 9 ((((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ 𝑎 finSupp (0g𝐿)) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣)))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
232231anasss 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓))))
233138, 232jca 511 . . . . . . 7 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿))) finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ (((𝑔𝐻 ↦ if(𝑔𝐵, (𝑎𝑔), (0g𝐿)))‘𝑓)(.r𝐿)𝑓)))))
234110, 122, 233rspcedvdw 3594 . . . . . 6 (((𝜑𝑎 ∈ (𝐺m 𝐵)) ∧ (𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
235234r19.29an 3138 . . . . 5 ((𝜑 ∧ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))) → ∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))))
236103, 235impbida 800 . . . 4 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑣𝐵 ↦ ((𝑎𝑣)(.r𝐿)𝑣))))))
23752, 79, 2363bitr4rd 312 . . 3 (𝜑 → (∃𝑝 ∈ (𝐺m 𝐻)(𝑝 finSupp (0g𝐿) ∧ 𝑥 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑝𝑓)(.r𝐿)𝑓)))) ↔ 𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
2383, 16, 2373bitrd 305 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)))
239238eqrdv 2728 1 (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cdif 3913  cun 3914  wss 3916  ifcif 4490   class class class wbr 5109  cmpt 5190  dom cdm 5640   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  Basecbs 17185  s cress 17206  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667  SubGrpcsubg 19058  CMndccmn 19716  Ringcrg 20148  SubRingcsubrg 20484  RingSpancrgspn 20525  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20772  LSpanclspn 20883  LBasisclbs 20987  subringAlg csra 21084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-r1 9723  df-rank 9724  df-card 9898  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-word 14485  df-lsw 14534  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-s2 14820  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lbs 20988  df-sra 21086  df-rgmod 21087  df-cnfld 21271  df-zring 21363  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-ind 32780
This theorem is referenced by:  fldextrspunlem1  33676
  Copyright terms: Public domain W3C validator