| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgfialg | Structured version Visualization version GIF version | ||
| Description: A finite field extension 𝐸 / 𝐹 is algebraic. Part of the proof of Proposition 1.1 of [Lang], p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| extdgfialg.b | ⊢ 𝐵 = (Base‘𝐸) |
| extdgfialg.d | ⊢ 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹)) |
| extdgfialg.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| extdgfialg.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| extdgfialg.1 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| extdgfialg | ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 2 | eqid 2731 | . . 3 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 3 | extdgfialg.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 5 | extdgfialg.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 6 | 5 | fldcrngd 20652 | . . 3 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 7 | extdgfialg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 8 | sdrgsubrg 20701 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | 1, 2, 3, 4, 6, 9 | irngssv 33693 | . 2 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ 𝐵) |
| 11 | extdgfialg.d | . . . . . 6 ⊢ 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹)) | |
| 12 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ Field) |
| 13 | 12 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐸 ∈ Field) |
| 14 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 15 | 14 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 16 | extdgfialg.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℕ0) |
| 18 | 17 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐷 ∈ ℕ0) |
| 19 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝐸) = (.r‘𝐸) | |
| 20 | oveq1 7348 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) | |
| 21 | 20 | cbvmptv 5190 | . . . . . 6 ⊢ (𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) |
| 22 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 23 | 22 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑥 ∈ 𝐵) |
| 24 | ovexd 7376 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → (0...𝐷) ∈ V) | |
| 25 | simp-4r 783 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 ∈ (𝐹 ↑m (0...𝐷))) | |
| 26 | 24, 15, 25 | elmaprd 32653 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎:(0...𝐷)⟶𝐹) |
| 27 | simpllr 775 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 finSupp (0g‘𝐸)) | |
| 28 | simplr 768 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) | |
| 29 | simpr 484 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) | |
| 30 | 3, 11, 13, 15, 18, 4, 19, 21, 23, 26, 27, 28, 29 | extdgfialglem2 33698 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 31 | 30 | anasss 466 | . . . 4 ⊢ (((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)}))) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 32 | 31 | anasss 466 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ (𝑎 finSupp (0g‘𝐸) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})))) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 33 | 3, 11, 12, 14, 17, 4, 19, 21, 22 | extdgfialglem1 33697 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑎 ∈ (𝐹 ↑m (0...𝐷))(𝑎 finSupp (0g‘𝐸) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})))) |
| 34 | 32, 33 | r19.29a 3140 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 35 | 10, 34 | eqelssd 3951 | 1 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 finSupp cfsupp 9240 0cc0 11001 ℕ0cn0 12376 ...cfz 13402 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 0gc0g 17338 Σg cgsu 17339 .gcmg 18975 mulGrpcmgp 20053 SubRingcsubrg 20479 Fieldcfield 20640 SubDRingcsdrg 20696 subringAlg csra 21100 evalSub1 ces1 22223 dimcldim 33603 IntgRing cirng 33688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-r1 9652 df-rank 9653 df-dju 9789 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ocomp 17177 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-mri 17485 df-acs 17486 df-proset 18195 df-drs 18196 df-poset 18214 df-ipo 18429 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-rhm 20385 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-rlreg 20604 df-drng 20641 df-field 20642 df-sdrg 20697 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lmhm 20951 df-lbs 21004 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-cnfld 21287 df-dsmm 21664 df-frlm 21679 df-uvc 21715 df-lindf 21738 df-linds 21739 df-assa 21785 df-asp 21786 df-ascl 21787 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-evls 22004 df-evl 22005 df-psr1 22087 df-vr1 22088 df-ply1 22089 df-coe1 22090 df-evls1 22225 df-evl1 22226 df-mdeg 25982 df-deg1 25983 df-mon1 26058 df-uc1p 26059 df-dim 33604 df-irng 33689 |
| This theorem is referenced by: finextalg 33703 |
| Copyright terms: Public domain | W3C validator |