| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgfialg | Structured version Visualization version GIF version | ||
| Description: A finite field extension 𝐸 / 𝐹 is algebraic. Part of the proof of Proposition 1.1 of [Lang], p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| extdgfialg.b | ⊢ 𝐵 = (Base‘𝐸) |
| extdgfialg.d | ⊢ 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹)) |
| extdgfialg.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| extdgfialg.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| extdgfialg.1 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| extdgfialg | ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 2 | eqid 2733 | . . 3 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 3 | extdgfialg.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | eqid 2733 | . . 3 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 5 | extdgfialg.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 6 | 5 | fldcrngd 20666 | . . 3 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 7 | extdgfialg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 8 | sdrgsubrg 20715 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | 1, 2, 3, 4, 6, 9 | irngssv 33773 | . 2 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ 𝐵) |
| 11 | extdgfialg.d | . . . . . 6 ⊢ 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹)) | |
| 12 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ Field) |
| 13 | 12 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐸 ∈ Field) |
| 14 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 15 | 14 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 16 | extdgfialg.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℕ0) |
| 18 | 17 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝐷 ∈ ℕ0) |
| 19 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝐸) = (.r‘𝐸) | |
| 20 | oveq1 7362 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) | |
| 21 | 20 | cbvmptv 5199 | . . . . . 6 ⊢ (𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)) |
| 22 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 23 | 22 | ad4antr 732 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑥 ∈ 𝐵) |
| 24 | ovexd 7390 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → (0...𝐷) ∈ V) | |
| 25 | simp-4r 783 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 ∈ (𝐹 ↑m (0...𝐷))) | |
| 26 | 24, 15, 25 | elmaprd 32685 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎:(0...𝐷)⟶𝐹) |
| 27 | simpllr 775 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 finSupp (0g‘𝐸)) | |
| 28 | simplr 768 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) | |
| 29 | simpr 484 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) | |
| 30 | 3, 11, 13, 15, 18, 4, 19, 21, 23, 26, 27, 28, 29 | extdgfialglem2 33778 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ (𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 31 | 30 | anasss 466 | . . . 4 ⊢ (((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ 𝑎 finSupp (0g‘𝐸)) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)}))) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 32 | 31 | anasss 466 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑎 ∈ (𝐹 ↑m (0...𝐷))) ∧ (𝑎 finSupp (0g‘𝐸) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})))) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 33 | 3, 11, 12, 14, 17, 4, 19, 21, 22 | extdgfialglem1 33777 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑎 ∈ (𝐹 ↑m (0...𝐷))(𝑎 finSupp (0g‘𝐸) ∧ ((𝐸 Σg (𝑎 ∘f (.r‘𝐸)(𝑚 ∈ (0...𝐷) ↦ (𝑚(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑥)))) = (0g‘𝐸) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘𝐸)})))) |
| 34 | 32, 33 | r19.29a 3141 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐸 IntgRing 𝐹)) |
| 35 | 10, 34 | eqelssd 3952 | 1 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 finSupp cfsupp 9256 0cc0 11017 ℕ0cn0 12392 ...cfz 13414 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 0gc0g 17350 Σg cgsu 17351 .gcmg 18988 mulGrpcmgp 20066 SubRingcsubrg 20493 Fieldcfield 20654 SubDRingcsdrg 20710 subringAlg csra 21114 evalSub1 ces1 22248 dimcldim 33683 IntgRing cirng 33768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9489 ax-inf2 9542 ax-ac2 10365 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-rpss 7665 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-r1 9668 df-rank 9669 df-dju 9805 df-card 9843 df-acn 9846 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ocomp 17189 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-mri 17498 df-acs 17499 df-proset 18208 df-drs 18209 df-poset 18227 df-ipo 18442 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-rhm 20399 df-nzr 20437 df-subrng 20470 df-subrg 20494 df-rlreg 20618 df-drng 20655 df-field 20656 df-sdrg 20711 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-lbs 21018 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-cnfld 21301 df-dsmm 21678 df-frlm 21693 df-uvc 21729 df-lindf 21752 df-linds 21753 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22020 df-evl 22021 df-psr1 22111 df-vr1 22112 df-ply1 22113 df-coe1 22114 df-evls1 22250 df-evl1 22251 df-mdeg 26007 df-deg1 26008 df-mon1 26083 df-uc1p 26084 df-dim 33684 df-irng 33769 |
| This theorem is referenced by: finextalg 33783 |
| Copyright terms: Public domain | W3C validator |