| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppc1stflem | Structured version Visualization version GIF version | ||
| Description: A utility theorem for proving theorems on projection functors of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppc1stf.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppc1stf.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppc1stf.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| oppc1stf.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| oppc1stflem.1 | ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| oppc1stflem.f | ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) |
| Ref | Expression |
|---|---|
| oppc1stflem | ⊢ (𝜑 → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ ( oppFunc ‘(𝐶𝐹𝐷)) = ( oppFunc ‘(𝐶𝐹𝐷)) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) | |
| 3 | 1, 2 | eloppf 49095 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → ((𝐶𝐹𝐷) ≠ ∅ ∧ (Rel (2nd ‘(𝐶𝐹𝐷)) ∧ Rel dom (2nd ‘(𝐶𝐹𝐷))))) |
| 4 | 3 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → (𝐶𝐹𝐷) ≠ ∅) |
| 5 | oppc1stflem.f | . . . . . . 7 ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) | |
| 6 | 5 | mpondm0 7609 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶𝐹𝐷) = ∅) |
| 7 | 6 | necon1ai 2952 | . . . . 5 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) | |
| 10 | oppc1stflem.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) | |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 12 | 9, 11 | eleqtrd 2830 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 13 | 8, 12 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 14 | oppc1stf.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | oppc1stf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 16 | 14, 15 | oppccatb 48978 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝑂 ∈ Cat)) |
| 17 | oppc1stf.p | . . . . . . . 8 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 18 | oppc1stf.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 19 | 17, 18 | oppccatb 48978 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝑃 ∈ Cat)) |
| 20 | 16, 19 | anbi12d 632 | . . . . . 6 ⊢ (𝜑 → ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) ↔ (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat))) |
| 21 | 20 | biimprd 248 | . . . . 5 ⊢ (𝜑 → ((𝑂 ∈ Cat ∧ 𝑃 ∈ Cat) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))) |
| 22 | 5 | elmpocl 7610 | . . . . 5 ⊢ (𝑥 ∈ (𝑂𝐹𝑃) → (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat)) |
| 23 | 21, 22 | impel 505 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 24 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) | |
| 25 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 26 | 24, 25 | eleqtrrd 2831 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) |
| 27 | 23, 26 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) |
| 28 | 13, 27 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷)) ↔ 𝑥 ∈ (𝑂𝐹𝑃))) |
| 29 | 28 | eqrdv 2727 | 1 ⊢ (𝜑 → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 dom cdm 5631 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 2nd c2nd 7946 Catccat 17601 oppCatcoppc 17648 oppFunc coppf 49084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-homf 17607 df-comf 17608 df-oppc 17649 df-oppf 49085 |
| This theorem is referenced by: oppc1stf 49250 oppc2ndf 49251 |
| Copyright terms: Public domain | W3C validator |