| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppc1stflem | Structured version Visualization version GIF version | ||
| Description: A utility theorem for proving theorems on projection functors of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppc1stf.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppc1stf.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppc1stf.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| oppc1stf.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| oppc1stflem.1 | ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| oppc1stflem.f | ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) |
| Ref | Expression |
|---|---|
| oppc1stflem | ⊢ (𝜑 → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . 7 ⊢ ( oppFunc ‘(𝐶𝐹𝐷)) = ( oppFunc ‘(𝐶𝐹𝐷)) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) | |
| 3 | 1, 2 | eloppf 49165 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → ((𝐶𝐹𝐷) ≠ ∅ ∧ (Rel (2nd ‘(𝐶𝐹𝐷)) ∧ Rel dom (2nd ‘(𝐶𝐹𝐷))))) |
| 4 | 3 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → (𝐶𝐹𝐷) ≠ ∅) |
| 5 | oppc1stflem.f | . . . . . . 7 ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) | |
| 6 | 5 | mpondm0 7581 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶𝐹𝐷) = ∅) |
| 7 | 6 | necon1ai 2955 | . . . . 5 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) | |
| 10 | oppc1stflem.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) | |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 12 | 9, 11 | eleqtrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 13 | 8, 12 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 14 | oppc1stf.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | oppc1stf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 16 | 14, 15 | oppccatb 49048 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝑂 ∈ Cat)) |
| 17 | oppc1stf.p | . . . . . . . 8 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 18 | oppc1stf.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 19 | 17, 18 | oppccatb 49048 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝑃 ∈ Cat)) |
| 20 | 16, 19 | anbi12d 632 | . . . . . 6 ⊢ (𝜑 → ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) ↔ (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat))) |
| 21 | 20 | biimprd 248 | . . . . 5 ⊢ (𝜑 → ((𝑂 ∈ Cat ∧ 𝑃 ∈ Cat) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))) |
| 22 | 5 | elmpocl 7582 | . . . . 5 ⊢ (𝑥 ∈ (𝑂𝐹𝑃) → (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat)) |
| 23 | 21, 22 | impel 505 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 24 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) | |
| 25 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 26 | 24, 25 | eleqtrrd 2834 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) |
| 27 | 23, 26 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → 𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷))) |
| 28 | 13, 27 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ ( oppFunc ‘(𝐶𝐹𝐷)) ↔ 𝑥 ∈ (𝑂𝐹𝑃))) |
| 29 | 28 | eqrdv 2729 | 1 ⊢ (𝜑 → ( oppFunc ‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 dom cdm 5611 Rel wrel 5616 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 2nd c2nd 7915 Catccat 17565 oppCatcoppc 17612 oppFunc coppf 49154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-homf 17571 df-comf 17572 df-oppc 17613 df-oppf 49155 |
| This theorem is referenced by: oppc1stf 49320 oppc2ndf 49321 |
| Copyright terms: Public domain | W3C validator |