| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppc1stflem | Structured version Visualization version GIF version | ||
| Description: A utility theorem for proving theorems on projection functors of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppc1stf.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppc1stf.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppc1stf.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| oppc1stf.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| oppc1stflem.1 | ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| oppc1stflem.f | ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) |
| Ref | Expression |
|---|---|
| oppc1stflem | ⊢ (𝜑 → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . 7 ⊢ (oppFunc‘(𝐶𝐹𝐷)) = (oppFunc‘(𝐶𝐹𝐷)) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) → 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) | |
| 3 | 1, 2 | eloppf 49110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) → ((𝐶𝐹𝐷) ≠ ∅ ∧ (Rel (2nd ‘(𝐶𝐹𝐷)) ∧ Rel dom (2nd ‘(𝐶𝐹𝐷))))) |
| 4 | 3 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) → (𝐶𝐹𝐷) ≠ ∅) |
| 5 | oppc1stflem.f | . . . . . . 7 ⊢ 𝐹 = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 𝑌) | |
| 6 | 5 | mpondm0 7631 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶𝐹𝐷) = ∅) |
| 7 | 6 | necon1ai 2953 | . . . . 5 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) | |
| 10 | oppc1stflem.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) | |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 12 | 9, 11 | eleqtrd 2831 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 13 | 8, 12 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) → 𝑥 ∈ (𝑂𝐹𝑃)) |
| 14 | oppc1stf.o | . . . . . . . 8 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | oppc1stf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 16 | 14, 15 | oppccatb 48993 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝑂 ∈ Cat)) |
| 17 | oppc1stf.p | . . . . . . . 8 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 18 | oppc1stf.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 19 | 17, 18 | oppccatb 48993 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝑃 ∈ Cat)) |
| 20 | 16, 19 | anbi12d 632 | . . . . . 6 ⊢ (𝜑 → ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) ↔ (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat))) |
| 21 | 20 | biimprd 248 | . . . . 5 ⊢ (𝜑 → ((𝑂 ∈ Cat ∧ 𝑃 ∈ Cat) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))) |
| 22 | 5 | elmpocl 7632 | . . . . 5 ⊢ (𝑥 ∈ (𝑂𝐹𝑃) → (𝑂 ∈ Cat ∧ 𝑃 ∈ Cat)) |
| 23 | 21, 22 | impel 505 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 24 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (𝑂𝐹𝑃)) | |
| 25 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| 26 | 24, 25 | eleqtrrd 2832 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) |
| 27 | 23, 26 | mpdan 687 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂𝐹𝑃)) → 𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷))) |
| 28 | 13, 27 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (oppFunc‘(𝐶𝐹𝐷)) ↔ 𝑥 ∈ (𝑂𝐹𝑃))) |
| 29 | 28 | eqrdv 2728 | 1 ⊢ (𝜑 → (oppFunc‘(𝐶𝐹𝐷)) = (𝑂𝐹𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 dom cdm 5640 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 2nd c2nd 7969 Catccat 17631 oppCatcoppc 17678 oppFunccoppf 49099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-comf 17638 df-oppc 17679 df-oppf 49100 |
| This theorem is referenced by: oppc1stf 49259 oppc2ndf 49260 |
| Copyright terms: Public domain | W3C validator |