MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem5 Structured version   Visualization version   GIF version

Theorem bposlem5 27350
Description: Lemma for bpos 27355. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem5
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos.3 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 id 22 . . . . . . . 8 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
3 5nn 12379 . . . . . . . . . . 11 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12983 . . . . . . . . . . 11 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 586 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12613 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13697 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 14372 . . . . . . . . 9 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
11 pccl 16896 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
122, 10, 11syl2anr 596 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
141, 13pcmptcl 16938 . . . . 5 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
1514simprd 495 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
16 3nn 12372 . . . . 5 3 ∈ ℕ
17 bpos.5 . . . . . 6 𝑀 = (⌊‘(√‘(2 · 𝑁)))
18 2z 12675 . . . . . . . . . . 11 2 ∈ ℤ
196nnzd 12666 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
20 zmulcl 12692 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2118, 19, 20sylancr 586 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℤ)
2221zred 12747 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 2nn 12366 . . . . . . . . . . . 12 2 ∈ ℕ
24 nnmulcl 12317 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2523, 6, 24sylancr 586 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ)
2625nnrpd 13097 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2726rpge0d 13103 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑁))
2822, 27resqrtcld 15466 . . . . . . . 8 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
2928flcld 13849 . . . . . . 7 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
30 sqrt9 15322 . . . . . . . . 9 (√‘9) = 3
31 9re 12392 . . . . . . . . . . . 12 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℝ)
33 10re 12777 . . . . . . . . . . . 12 10 ∈ ℝ
3433a1i 11 . . . . . . . . . . 11 (𝜑10 ∈ ℝ)
35 lep1 12135 . . . . . . . . . . . . . 14 (9 ∈ ℝ → 9 ≤ (9 + 1))
3631, 35ax-mp 5 . . . . . . . . . . . . 13 9 ≤ (9 + 1)
37 9p1e10 12760 . . . . . . . . . . . . 13 (9 + 1) = 10
3836, 37breqtri 5191 . . . . . . . . . . . 12 9 ≤ 10
3938a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ≤ 10)
40 5cn 12381 . . . . . . . . . . . . 13 5 ∈ ℂ
41 2cn 12368 . . . . . . . . . . . . 13 2 ∈ ℂ
42 5t2e10 12858 . . . . . . . . . . . . 13 (5 · 2) = 10
4340, 41, 42mulcomli 11299 . . . . . . . . . . . 12 (2 · 5) = 10
44 eluzle 12916 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
454, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
466nnred 12308 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
47 5re 12380 . . . . . . . . . . . . . . 15 5 ∈ ℝ
48 2re 12367 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
49 2pos 12396 . . . . . . . . . . . . . . . 16 0 < 2
5048, 49pm3.2i 470 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 12147 . . . . . . . . . . . . . . 15 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5247, 50, 51mp3an13 1452 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5346, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5445, 53mpbid 232 . . . . . . . . . . . 12 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
5543, 54eqbrtrrid 5202 . . . . . . . . . . 11 (𝜑10 ≤ (2 · 𝑁))
5632, 34, 22, 39, 55letrd 11447 . . . . . . . . . 10 (𝜑 → 9 ≤ (2 · 𝑁))
57 0re 11292 . . . . . . . . . . . . 13 0 ∈ ℝ
58 9pos 12406 . . . . . . . . . . . . 13 0 < 9
5957, 31, 58ltleii 11413 . . . . . . . . . . . 12 0 ≤ 9
6031, 59pm3.2i 470 . . . . . . . . . . 11 (9 ∈ ℝ ∧ 0 ≤ 9)
6122, 27jca 511 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
62 sqrtle 15309 . . . . . . . . . . 11 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6360, 61, 62sylancr 586 . . . . . . . . . 10 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6456, 63mpbid 232 . . . . . . . . 9 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
6530, 64eqbrtrrid 5202 . . . . . . . 8 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
66 3z 12676 . . . . . . . . 9 3 ∈ ℤ
67 flge 13856 . . . . . . . . 9 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6828, 66, 67sylancl 585 . . . . . . . 8 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6965, 68mpbid 232 . . . . . . 7 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
7066eluz1i 12911 . . . . . . 7 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
7129, 69, 70sylanbrc 582 . . . . . 6 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
7217, 71eqeltrid 2848 . . . . 5 (𝜑𝑀 ∈ (ℤ‘3))
73 eluznn 12983 . . . . 5 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
7416, 72, 73sylancr 586 . . . 4 (𝜑𝑀 ∈ ℕ)
7515, 74ffvelcdmd 7119 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7675nnred 12308 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
7774nnred 12308 . . . . 5 (𝜑𝑀 ∈ ℝ)
78 ppicl 27192 . . . . 5 (𝑀 ∈ ℝ → (π𝑀) ∈ ℕ0)
7977, 78syl 17 . . . 4 (𝜑 → (π𝑀) ∈ ℕ0)
8025, 79nnexpcld 14294 . . 3 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℕ)
8180nnred 12308 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℝ)
82 nndivre 12334 . . . . 5 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
8328, 16, 82sylancl 585 . . . 4 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
84 readdcl 11267 . . . 4 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8583, 48, 84sylancl 585 . . 3 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8622, 27, 85recxpcld 26783 . 2 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
87 fveq2 6920 . . . . . 6 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
88 fveq2 6920 . . . . . . . 8 (𝑥 = 1 → (π𝑥) = (π‘1))
89 ppi1 27225 . . . . . . . 8 (π‘1) = 0
9088, 89eqtrdi 2796 . . . . . . 7 (𝑥 = 1 → (π𝑥) = 0)
9190oveq2d 7464 . . . . . 6 (𝑥 = 1 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑0))
9287, 91breq12d 5179 . . . . 5 (𝑥 = 1 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0)))
9392imbi2d 340 . . . 4 (𝑥 = 1 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))))
94 fveq2 6920 . . . . . 6 (𝑥 = 𝑘 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑘))
95 fveq2 6920 . . . . . . 7 (𝑥 = 𝑘 → (π𝑥) = (π𝑘))
9695oveq2d 7464 . . . . . 6 (𝑥 = 𝑘 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑘)))
9794, 96breq12d 5179 . . . . 5 (𝑥 = 𝑘 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
9897imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)))))
99 fveq2 6920 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑘 + 1)))
100 fveq2 6920 . . . . . . 7 (𝑥 = (𝑘 + 1) → (π𝑥) = (π‘(𝑘 + 1)))
101100oveq2d 7464 . . . . . 6 (𝑥 = (𝑘 + 1) → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π‘(𝑘 + 1))))
10299, 101breq12d 5179 . . . . 5 (𝑥 = (𝑘 + 1) → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
103102imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
104 fveq2 6920 . . . . . 6 (𝑥 = 𝑀 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑀))
105 fveq2 6920 . . . . . . 7 (𝑥 = 𝑀 → (π𝑥) = (π𝑀))
106105oveq2d 7464 . . . . . 6 (𝑥 = 𝑀 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑀)))
107104, 106breq12d 5179 . . . . 5 (𝑥 = 𝑀 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
108107imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))))
109 1z 12673 . . . . . . . 8 1 ∈ ℤ
110 seq1 14065 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
111109, 110ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
112 1nn 12304 . . . . . . . 8 1 ∈ ℕ
113 1nprm 16726 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
114 eleq1 2832 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
115113, 114mtbiri 327 . . . . . . . . . 10 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
116115iffalsed 4559 . . . . . . . . 9 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
117 1ex 11286 . . . . . . . . 9 1 ∈ V
118116, 1, 117fvmpt 7029 . . . . . . . 8 (1 ∈ ℕ → (𝐹‘1) = 1)
119112, 118ax-mp 5 . . . . . . 7 (𝐹‘1) = 1
120111, 119eqtri 2768 . . . . . 6 (seq1( · , 𝐹)‘1) = 1
121 1le1 11918 . . . . . 6 1 ≤ 1
122120, 121eqbrtri 5187 . . . . 5 (seq1( · , 𝐹)‘1) ≤ 1
12321zcnd 12748 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
124123exp0d 14190 . . . . 5 (𝜑 → ((2 · 𝑁)↑0) = 1)
125122, 124breqtrrid 5204 . . . 4 (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))
12615ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
127126nnred 12308 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
128127adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
12925ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
130 nnre 12300 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
131130ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → 𝑘 ∈ ℝ)
132 ppicl 27192 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (π𝑘) ∈ ℕ0)
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π𝑘) ∈ ℕ0)
134129, 133nnexpcld 14294 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℕ)
135134nnred 12308 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℝ)
136 nnre 12300 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ)
137 nngt0 12324 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → 0 < (2 · 𝑁))
138136, 137jca 511 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℕ → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
13925, 138syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
140139ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
141 lemul1 12146 . . . . . . . . . 10 (((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ ((2 · 𝑁)↑(π𝑘)) ∈ ℝ ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁))) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
142128, 135, 140, 141syl3anc 1371 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
143 nnz 12660 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
145 ppiprm 27212 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
146144, 145sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
147146oveq2d 7464 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑((π𝑘) + 1)))
148123ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℂ)
149148, 133expp1d 14197 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑((π𝑘) + 1)) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
150147, 149eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
151150breq2d 5178 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
152142, 151bitr4d 282 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
153 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
154 nnuz 12946 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
155153, 154eleqtrdi 2854 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
156 seqp1 14067 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
157155, 156syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
158157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
159 peano2nn 12305 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
160159adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
161 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
162 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
163 oveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = ((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁)))
164162, 163oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
165161, 164ifbieq1d 4572 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
166 ovex 7481 . . . . . . . . . . . . . . . 16 ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ∈ V
167166, 117ifex 4598 . . . . . . . . . . . . . . 15 if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) ∈ V
168165, 1, 167fvmpt 7029 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
169160, 168syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
170 iftrue 4554 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
171169, 170sylan9eq 2800 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
1726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑁 ∈ ℕ)
173 bposlem1 27346 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
174172, 173sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
175171, 174eqbrtrd 5188 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁))
17614simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
177 ffvelcdm 7115 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
178176, 159, 177syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
179178nnred 12308 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
180179adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
18122ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
182 nnre 12300 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
183 nngt0 12324 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑘))
184182, 183jca 511 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
185126, 184syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
186185adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
187 lemul2 12147 . . . . . . . . . . . 12 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘))) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
188180, 181, 186, 187syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
189175, 188mpbid 232 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
190158, 189eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
191 ffvelcdm 7115 . . . . . . . . . . . . 13 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
19215, 159, 191syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
193192nnred 12308 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ)
19425adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
195126, 194nnmulcld 12346 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℕ)
196195nnred 12308 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ)
197160nnred 12308 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
198 ppicl 27192 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℝ → (π‘(𝑘 + 1)) ∈ ℕ0)
199197, 198syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (π‘(𝑘 + 1)) ∈ ℕ0)
200194, 199nnexpcld 14294 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℕ)
201200nnred 12308 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ)
202 letr 11384 . . . . . . . . . . 11 (((seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
203193, 196, 201, 202syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
204203adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
205190, 204mpand 694 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
206152, 205sylbid 240 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
207157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
208 iffalse 4557 . . . . . . . . . . . 12 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
209169, 208sylan9eq 2800 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
210209oveq2d 7464 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) = ((seq1( · , 𝐹)‘𝑘) · 1))
211126adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
212211nncnd 12309 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℂ)
213212mulridd 11307 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · 1) = (seq1( · , 𝐹)‘𝑘))
214207, 210, 2133eqtrd 2784 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = (seq1( · , 𝐹)‘𝑘))
215 ppinprm 27213 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
216144, 215sylan 579 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
217216oveq2d 7464 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑(π𝑘)))
218214, 217breq12d 5179 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
219218biimprd 248 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
220206, 219pm2.61dan 812 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
221220expcom 413 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
222221a2d 29 . . . 4 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))) → (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
22393, 98, 103, 108, 125, 222nnind 12311 . . 3 (𝑀 ∈ ℕ → (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
22474, 223mpcom 38 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))
225 cxpexp 26728 . . . 4 (((2 · 𝑁) ∈ ℂ ∧ (π𝑀) ∈ ℕ0) → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
226123, 79, 225syl2anc 583 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
22779nn0red 12614 . . . . 5 (𝜑 → (π𝑀) ∈ ℝ)
228 nndivre 12334 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 3 ∈ ℕ) → (𝑀 / 3) ∈ ℝ)
22977, 16, 228sylancl 585 . . . . . 6 (𝜑 → (𝑀 / 3) ∈ ℝ)
230 readdcl 11267 . . . . . 6 (((𝑀 / 3) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑀 / 3) + 2) ∈ ℝ)
231229, 48, 230sylancl 585 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ∈ ℝ)
23274nnnn0d 12613 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
233232nn0ge0d 12616 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
234 ppiub 27266 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (π𝑀) ≤ ((𝑀 / 3) + 2))
23577, 233, 234syl2anc 583 . . . . 5 (𝜑 → (π𝑀) ≤ ((𝑀 / 3) + 2))
23648a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237 flle 13850 . . . . . . . . 9 ((√‘(2 · 𝑁)) ∈ ℝ → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23828, 237syl 17 . . . . . . . 8 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23917, 238eqbrtrid 5201 . . . . . . 7 (𝜑𝑀 ≤ (√‘(2 · 𝑁)))
240 3re 12373 . . . . . . . . . 10 3 ∈ ℝ
241 3pos 12398 . . . . . . . . . 10 0 < 3
242240, 241pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
243242a1i 11 . . . . . . . 8 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
244 lediv1 12160 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
24577, 28, 243, 244syl3anc 1371 . . . . . . 7 (𝜑 → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
246239, 245mpbid 232 . . . . . 6 (𝜑 → (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3))
247229, 83, 236, 246leadd1dd 11904 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
248227, 231, 85, 235, 247letrd 11447 . . . 4 (𝜑 → (π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
249 2t1e2 12456 . . . . . . . 8 (2 · 1) = 2
2506nnge1d 12341 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑁)
251 1re 11290 . . . . . . . . . . 11 1 ∈ ℝ
252 lemul2 12147 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
253251, 50, 252mp3an13 1452 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
25446, 253syl 17 . . . . . . . . 9 (𝜑 → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
255250, 254mpbid 232 . . . . . . . 8 (𝜑 → (2 · 1) ≤ (2 · 𝑁))
256249, 255eqbrtrrid 5202 . . . . . . 7 (𝜑 → 2 ≤ (2 · 𝑁))
25718eluz1i 12911 . . . . . . 7 ((2 · 𝑁) ∈ (ℤ‘2) ↔ ((2 · 𝑁) ∈ ℤ ∧ 2 ≤ (2 · 𝑁)))
25821, 256, 257sylanbrc 582 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ (ℤ‘2))
259 eluz2gt1 12985 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘2) → 1 < (2 · 𝑁))
260258, 259syl 17 . . . . 5 (𝜑 → 1 < (2 · 𝑁))
26122, 260, 227, 85cxpled 26780 . . . 4 (𝜑 → ((π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2) ↔ ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))))
262248, 261mpbid 232 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
263226, 262eqbrtrrd 5190 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
26476, 81, 86, 224, 263letrd 11447 1 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  5c5 12351  9c9 12355  0cn0 12553  cz 12639  cdc 12758  cuz 12903  ...cfz 13567  cfl 13841  seqcseq 14052  cexp 14112  Ccbc 14351  csqrt 15282  cprime 16718   pCnt cpc 16883  𝑐ccxp 26615  πcppi 27155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-ppi 27161
This theorem is referenced by:  bposlem6  27351
  Copyright terms: Public domain W3C validator