MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem5 Structured version   Visualization version   GIF version

Theorem bposlem5 25872
Description: Lemma for bpos 25877. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem5
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos.3 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 id 22 . . . . . . . 8 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
3 5nn 11711 . . . . . . . . . . 11 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12306 . . . . . . . . . . 11 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 590 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11943 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13014 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13679 . . . . . . . . 9 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
11 pccl 16176 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
122, 10, 11syl2anr 599 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
141, 13pcmptcl 16217 . . . . 5 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
1514simprd 499 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
16 3nn 11704 . . . . 5 3 ∈ ℕ
17 bpos.5 . . . . . 6 𝑀 = (⌊‘(√‘(2 · 𝑁)))
18 2z 12002 . . . . . . . . . . 11 2 ∈ ℤ
196nnzd 12074 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
20 zmulcl 12019 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2118, 19, 20sylancr 590 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℤ)
2221zred 12075 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 2nn 11698 . . . . . . . . . . . 12 2 ∈ ℕ
24 nnmulcl 11649 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2523, 6, 24sylancr 590 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ)
2625nnrpd 12417 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2726rpge0d 12423 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑁))
2822, 27resqrtcld 14769 . . . . . . . 8 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
2928flcld 13163 . . . . . . 7 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
30 sqrt9 14625 . . . . . . . . 9 (√‘9) = 3
31 9re 11724 . . . . . . . . . . . 12 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℝ)
33 10re 12105 . . . . . . . . . . . 12 10 ∈ ℝ
3433a1i 11 . . . . . . . . . . 11 (𝜑10 ∈ ℝ)
35 lep1 11470 . . . . . . . . . . . . . 14 (9 ∈ ℝ → 9 ≤ (9 + 1))
3631, 35ax-mp 5 . . . . . . . . . . . . 13 9 ≤ (9 + 1)
37 9p1e10 12088 . . . . . . . . . . . . 13 (9 + 1) = 10
3836, 37breqtri 5055 . . . . . . . . . . . 12 9 ≤ 10
3938a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ≤ 10)
40 5cn 11713 . . . . . . . . . . . . 13 5 ∈ ℂ
41 2cn 11700 . . . . . . . . . . . . 13 2 ∈ ℂ
42 5t2e10 12186 . . . . . . . . . . . . 13 (5 · 2) = 10
4340, 41, 42mulcomli 10639 . . . . . . . . . . . 12 (2 · 5) = 10
44 eluzle 12244 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
454, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
466nnred 11640 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
47 5re 11712 . . . . . . . . . . . . . . 15 5 ∈ ℝ
48 2re 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
49 2pos 11728 . . . . . . . . . . . . . . . 16 0 < 2
5048, 49pm3.2i 474 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 11482 . . . . . . . . . . . . . . 15 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5247, 50, 51mp3an13 1449 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5346, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5445, 53mpbid 235 . . . . . . . . . . . 12 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
5543, 54eqbrtrrid 5066 . . . . . . . . . . 11 (𝜑10 ≤ (2 · 𝑁))
5632, 34, 22, 39, 55letrd 10786 . . . . . . . . . 10 (𝜑 → 9 ≤ (2 · 𝑁))
57 0re 10632 . . . . . . . . . . . . 13 0 ∈ ℝ
58 9pos 11738 . . . . . . . . . . . . 13 0 < 9
5957, 31, 58ltleii 10752 . . . . . . . . . . . 12 0 ≤ 9
6031, 59pm3.2i 474 . . . . . . . . . . 11 (9 ∈ ℝ ∧ 0 ≤ 9)
6122, 27jca 515 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
62 sqrtle 14612 . . . . . . . . . . 11 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6360, 61, 62sylancr 590 . . . . . . . . . 10 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6456, 63mpbid 235 . . . . . . . . 9 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
6530, 64eqbrtrrid 5066 . . . . . . . 8 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
66 3z 12003 . . . . . . . . 9 3 ∈ ℤ
67 flge 13170 . . . . . . . . 9 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6828, 66, 67sylancl 589 . . . . . . . 8 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6965, 68mpbid 235 . . . . . . 7 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
7066eluz1i 12239 . . . . . . 7 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
7129, 69, 70sylanbrc 586 . . . . . 6 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
7217, 71eqeltrid 2894 . . . . 5 (𝜑𝑀 ∈ (ℤ‘3))
73 eluznn 12306 . . . . 5 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
7416, 72, 73sylancr 590 . . . 4 (𝜑𝑀 ∈ ℕ)
7515, 74ffvelrnd 6829 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7675nnred 11640 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
7774nnred 11640 . . . . 5 (𝜑𝑀 ∈ ℝ)
78 ppicl 25716 . . . . 5 (𝑀 ∈ ℝ → (π𝑀) ∈ ℕ0)
7977, 78syl 17 . . . 4 (𝜑 → (π𝑀) ∈ ℕ0)
8025, 79nnexpcld 13602 . . 3 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℕ)
8180nnred 11640 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℝ)
82 nndivre 11666 . . . . 5 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
8328, 16, 82sylancl 589 . . . 4 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
84 readdcl 10609 . . . 4 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8583, 48, 84sylancl 589 . . 3 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8622, 27, 85recxpcld 25314 . 2 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
87 fveq2 6645 . . . . . 6 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
88 fveq2 6645 . . . . . . . 8 (𝑥 = 1 → (π𝑥) = (π‘1))
89 ppi1 25749 . . . . . . . 8 (π‘1) = 0
9088, 89eqtrdi 2849 . . . . . . 7 (𝑥 = 1 → (π𝑥) = 0)
9190oveq2d 7151 . . . . . 6 (𝑥 = 1 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑0))
9287, 91breq12d 5043 . . . . 5 (𝑥 = 1 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0)))
9392imbi2d 344 . . . 4 (𝑥 = 1 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))))
94 fveq2 6645 . . . . . 6 (𝑥 = 𝑘 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑘))
95 fveq2 6645 . . . . . . 7 (𝑥 = 𝑘 → (π𝑥) = (π𝑘))
9695oveq2d 7151 . . . . . 6 (𝑥 = 𝑘 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑘)))
9794, 96breq12d 5043 . . . . 5 (𝑥 = 𝑘 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
9897imbi2d 344 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)))))
99 fveq2 6645 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑘 + 1)))
100 fveq2 6645 . . . . . . 7 (𝑥 = (𝑘 + 1) → (π𝑥) = (π‘(𝑘 + 1)))
101100oveq2d 7151 . . . . . 6 (𝑥 = (𝑘 + 1) → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π‘(𝑘 + 1))))
10299, 101breq12d 5043 . . . . 5 (𝑥 = (𝑘 + 1) → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
103102imbi2d 344 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
104 fveq2 6645 . . . . . 6 (𝑥 = 𝑀 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑀))
105 fveq2 6645 . . . . . . 7 (𝑥 = 𝑀 → (π𝑥) = (π𝑀))
106105oveq2d 7151 . . . . . 6 (𝑥 = 𝑀 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑀)))
107104, 106breq12d 5043 . . . . 5 (𝑥 = 𝑀 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
108107imbi2d 344 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))))
109 1z 12000 . . . . . . . 8 1 ∈ ℤ
110 seq1 13377 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
111109, 110ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
112 1nn 11636 . . . . . . . 8 1 ∈ ℕ
113 1nprm 16013 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
114 eleq1 2877 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
115113, 114mtbiri 330 . . . . . . . . . 10 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
116115iffalsed 4436 . . . . . . . . 9 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
117 1ex 10626 . . . . . . . . 9 1 ∈ V
118116, 1, 117fvmpt 6745 . . . . . . . 8 (1 ∈ ℕ → (𝐹‘1) = 1)
119112, 118ax-mp 5 . . . . . . 7 (𝐹‘1) = 1
120111, 119eqtri 2821 . . . . . 6 (seq1( · , 𝐹)‘1) = 1
121 1le1 11257 . . . . . 6 1 ≤ 1
122120, 121eqbrtri 5051 . . . . 5 (seq1( · , 𝐹)‘1) ≤ 1
12321zcnd 12076 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
124123exp0d 13500 . . . . 5 (𝜑 → ((2 · 𝑁)↑0) = 1)
125122, 124breqtrrid 5068 . . . 4 (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))
12615ffvelrnda 6828 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
127126nnred 11640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
128127adantr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
12925ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
130 nnre 11632 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
131130ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → 𝑘 ∈ ℝ)
132 ppicl 25716 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (π𝑘) ∈ ℕ0)
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π𝑘) ∈ ℕ0)
134129, 133nnexpcld 13602 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℕ)
135134nnred 11640 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℝ)
136 nnre 11632 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ)
137 nngt0 11656 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → 0 < (2 · 𝑁))
138136, 137jca 515 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℕ → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
13925, 138syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
140139ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
141 lemul1 11481 . . . . . . . . . 10 (((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ ((2 · 𝑁)↑(π𝑘)) ∈ ℝ ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁))) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
142128, 135, 140, 141syl3anc 1368 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
143 nnz 11992 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
144143adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
145 ppiprm 25736 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
146144, 145sylan 583 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
147146oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑((π𝑘) + 1)))
148123ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℂ)
149148, 133expp1d 13507 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑((π𝑘) + 1)) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
150147, 149eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
151150breq2d 5042 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
152142, 151bitr4d 285 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
153 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
154 nnuz 12269 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
155153, 154eleqtrdi 2900 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
156 seqp1 13379 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
157155, 156syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
158157adantr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
159 peano2nn 11637 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
160159adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
161 eleq1 2877 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
162 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
163 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = ((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁)))
164162, 163oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
165161, 164ifbieq1d 4448 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
166 ovex 7168 . . . . . . . . . . . . . . . 16 ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ∈ V
167166, 117ifex 4473 . . . . . . . . . . . . . . 15 if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) ∈ V
168165, 1, 167fvmpt 6745 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
169160, 168syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
170 iftrue 4431 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
171169, 170sylan9eq 2853 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
1726adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑁 ∈ ℕ)
173 bposlem1 25868 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
174172, 173sylan 583 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
175171, 174eqbrtrd 5052 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁))
17614simpld 498 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
177 ffvelrn 6826 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
178176, 159, 177syl2an 598 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
179178nnred 11640 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
180179adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
18122ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
182 nnre 11632 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
183 nngt0 11656 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑘))
184182, 183jca 515 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
185126, 184syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
186185adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
187 lemul2 11482 . . . . . . . . . . . 12 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘))) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
188180, 181, 186, 187syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
189175, 188mpbid 235 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
190158, 189eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
191 ffvelrn 6826 . . . . . . . . . . . . 13 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
19215, 159, 191syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
193192nnred 11640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ)
19425adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
195126, 194nnmulcld 11678 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℕ)
196195nnred 11640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ)
197160nnred 11640 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
198 ppicl 25716 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℝ → (π‘(𝑘 + 1)) ∈ ℕ0)
199197, 198syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (π‘(𝑘 + 1)) ∈ ℕ0)
200194, 199nnexpcld 13602 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℕ)
201200nnred 11640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ)
202 letr 10723 . . . . . . . . . . 11 (((seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
203193, 196, 201, 202syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
204203adantr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
205190, 204mpand 694 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
206152, 205sylbid 243 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
207157adantr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
208 iffalse 4434 . . . . . . . . . . . 12 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
209169, 208sylan9eq 2853 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
210209oveq2d 7151 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) = ((seq1( · , 𝐹)‘𝑘) · 1))
211126adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
212211nncnd 11641 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℂ)
213212mulid1d 10647 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · 1) = (seq1( · , 𝐹)‘𝑘))
214207, 210, 2133eqtrd 2837 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = (seq1( · , 𝐹)‘𝑘))
215 ppinprm 25737 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
216144, 215sylan 583 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
217216oveq2d 7151 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑(π𝑘)))
218214, 217breq12d 5043 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
219218biimprd 251 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
220206, 219pm2.61dan 812 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
221220expcom 417 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
222221a2d 29 . . . 4 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))) → (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
22393, 98, 103, 108, 125, 222nnind 11643 . . 3 (𝑀 ∈ ℕ → (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
22474, 223mpcom 38 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))
225 cxpexp 25259 . . . 4 (((2 · 𝑁) ∈ ℂ ∧ (π𝑀) ∈ ℕ0) → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
226123, 79, 225syl2anc 587 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
22779nn0red 11944 . . . . 5 (𝜑 → (π𝑀) ∈ ℝ)
228 nndivre 11666 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 3 ∈ ℕ) → (𝑀 / 3) ∈ ℝ)
22977, 16, 228sylancl 589 . . . . . 6 (𝜑 → (𝑀 / 3) ∈ ℝ)
230 readdcl 10609 . . . . . 6 (((𝑀 / 3) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑀 / 3) + 2) ∈ ℝ)
231229, 48, 230sylancl 589 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ∈ ℝ)
23274nnnn0d 11943 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
233232nn0ge0d 11946 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
234 ppiub 25788 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (π𝑀) ≤ ((𝑀 / 3) + 2))
23577, 233, 234syl2anc 587 . . . . 5 (𝜑 → (π𝑀) ≤ ((𝑀 / 3) + 2))
23648a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237 flle 13164 . . . . . . . . 9 ((√‘(2 · 𝑁)) ∈ ℝ → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23828, 237syl 17 . . . . . . . 8 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23917, 238eqbrtrid 5065 . . . . . . 7 (𝜑𝑀 ≤ (√‘(2 · 𝑁)))
240 3re 11705 . . . . . . . . . 10 3 ∈ ℝ
241 3pos 11730 . . . . . . . . . 10 0 < 3
242240, 241pm3.2i 474 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
243242a1i 11 . . . . . . . 8 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
244 lediv1 11494 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
24577, 28, 243, 244syl3anc 1368 . . . . . . 7 (𝜑 → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
246239, 245mpbid 235 . . . . . 6 (𝜑 → (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3))
247229, 83, 236, 246leadd1dd 11243 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
248227, 231, 85, 235, 247letrd 10786 . . . 4 (𝜑 → (π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
249 2t1e2 11788 . . . . . . . 8 (2 · 1) = 2
2506nnge1d 11673 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑁)
251 1re 10630 . . . . . . . . . . 11 1 ∈ ℝ
252 lemul2 11482 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
253251, 50, 252mp3an13 1449 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
25446, 253syl 17 . . . . . . . . 9 (𝜑 → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
255250, 254mpbid 235 . . . . . . . 8 (𝜑 → (2 · 1) ≤ (2 · 𝑁))
256249, 255eqbrtrrid 5066 . . . . . . 7 (𝜑 → 2 ≤ (2 · 𝑁))
25718eluz1i 12239 . . . . . . 7 ((2 · 𝑁) ∈ (ℤ‘2) ↔ ((2 · 𝑁) ∈ ℤ ∧ 2 ≤ (2 · 𝑁)))
25821, 256, 257sylanbrc 586 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ (ℤ‘2))
259 eluz2gt1 12308 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘2) → 1 < (2 · 𝑁))
260258, 259syl 17 . . . . 5 (𝜑 → 1 < (2 · 𝑁))
26122, 260, 227, 85cxpled 25311 . . . 4 (𝜑 → ((π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2) ↔ ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))))
262248, 261mpbid 235 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
263226, 262eqbrtrrd 5054 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
26476, 81, 86, 224, 263letrd 10786 1 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  5c5 11683  9c9 11687  0cn0 11885  cz 11969  cdc 12086  cuz 12231  ...cfz 12885  cfl 13155  seqcseq 13364  cexp 13425  Ccbc 13658  csqrt 14584  cprime 16005   pCnt cpc 16163  𝑐ccxp 25147  πcppi 25679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-ppi 25685
This theorem is referenced by:  bposlem6  25873
  Copyright terms: Public domain W3C validator