MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem5 Structured version   Visualization version   GIF version

Theorem bposlem5 26341
Description: Lemma for bpos 26346. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem5
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos.3 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 id 22 . . . . . . . 8 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
3 5nn 11989 . . . . . . . . . . 11 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12587 . . . . . . . . . . 11 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 586 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12223 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13297 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13965 . . . . . . . . 9 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
11 pccl 16478 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
122, 10, 11syl2anr 596 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
141, 13pcmptcl 16520 . . . . 5 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
1514simprd 495 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
16 3nn 11982 . . . . 5 3 ∈ ℕ
17 bpos.5 . . . . . 6 𝑀 = (⌊‘(√‘(2 · 𝑁)))
18 2z 12282 . . . . . . . . . . 11 2 ∈ ℤ
196nnzd 12354 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
20 zmulcl 12299 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2118, 19, 20sylancr 586 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℤ)
2221zred 12355 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 2nn 11976 . . . . . . . . . . . 12 2 ∈ ℕ
24 nnmulcl 11927 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2523, 6, 24sylancr 586 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ)
2625nnrpd 12699 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2726rpge0d 12705 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑁))
2822, 27resqrtcld 15057 . . . . . . . 8 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
2928flcld 13446 . . . . . . 7 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
30 sqrt9 14913 . . . . . . . . 9 (√‘9) = 3
31 9re 12002 . . . . . . . . . . . 12 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℝ)
33 10re 12385 . . . . . . . . . . . 12 10 ∈ ℝ
3433a1i 11 . . . . . . . . . . 11 (𝜑10 ∈ ℝ)
35 lep1 11746 . . . . . . . . . . . . . 14 (9 ∈ ℝ → 9 ≤ (9 + 1))
3631, 35ax-mp 5 . . . . . . . . . . . . 13 9 ≤ (9 + 1)
37 9p1e10 12368 . . . . . . . . . . . . 13 (9 + 1) = 10
3836, 37breqtri 5095 . . . . . . . . . . . 12 9 ≤ 10
3938a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ≤ 10)
40 5cn 11991 . . . . . . . . . . . . 13 5 ∈ ℂ
41 2cn 11978 . . . . . . . . . . . . 13 2 ∈ ℂ
42 5t2e10 12466 . . . . . . . . . . . . 13 (5 · 2) = 10
4340, 41, 42mulcomli 10915 . . . . . . . . . . . 12 (2 · 5) = 10
44 eluzle 12524 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
454, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
466nnred 11918 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
47 5re 11990 . . . . . . . . . . . . . . 15 5 ∈ ℝ
48 2re 11977 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
49 2pos 12006 . . . . . . . . . . . . . . . 16 0 < 2
5048, 49pm3.2i 470 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 11758 . . . . . . . . . . . . . . 15 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5247, 50, 51mp3an13 1450 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5346, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5445, 53mpbid 231 . . . . . . . . . . . 12 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
5543, 54eqbrtrrid 5106 . . . . . . . . . . 11 (𝜑10 ≤ (2 · 𝑁))
5632, 34, 22, 39, 55letrd 11062 . . . . . . . . . 10 (𝜑 → 9 ≤ (2 · 𝑁))
57 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
58 9pos 12016 . . . . . . . . . . . . 13 0 < 9
5957, 31, 58ltleii 11028 . . . . . . . . . . . 12 0 ≤ 9
6031, 59pm3.2i 470 . . . . . . . . . . 11 (9 ∈ ℝ ∧ 0 ≤ 9)
6122, 27jca 511 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
62 sqrtle 14900 . . . . . . . . . . 11 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6360, 61, 62sylancr 586 . . . . . . . . . 10 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6456, 63mpbid 231 . . . . . . . . 9 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
6530, 64eqbrtrrid 5106 . . . . . . . 8 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
66 3z 12283 . . . . . . . . 9 3 ∈ ℤ
67 flge 13453 . . . . . . . . 9 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6828, 66, 67sylancl 585 . . . . . . . 8 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6965, 68mpbid 231 . . . . . . 7 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
7066eluz1i 12519 . . . . . . 7 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
7129, 69, 70sylanbrc 582 . . . . . 6 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
7217, 71eqeltrid 2843 . . . . 5 (𝜑𝑀 ∈ (ℤ‘3))
73 eluznn 12587 . . . . 5 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
7416, 72, 73sylancr 586 . . . 4 (𝜑𝑀 ∈ ℕ)
7515, 74ffvelrnd 6944 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7675nnred 11918 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
7774nnred 11918 . . . . 5 (𝜑𝑀 ∈ ℝ)
78 ppicl 26185 . . . . 5 (𝑀 ∈ ℝ → (π𝑀) ∈ ℕ0)
7977, 78syl 17 . . . 4 (𝜑 → (π𝑀) ∈ ℕ0)
8025, 79nnexpcld 13888 . . 3 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℕ)
8180nnred 11918 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℝ)
82 nndivre 11944 . . . . 5 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
8328, 16, 82sylancl 585 . . . 4 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
84 readdcl 10885 . . . 4 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8583, 48, 84sylancl 585 . . 3 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8622, 27, 85recxpcld 25783 . 2 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
87 fveq2 6756 . . . . . 6 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
88 fveq2 6756 . . . . . . . 8 (𝑥 = 1 → (π𝑥) = (π‘1))
89 ppi1 26218 . . . . . . . 8 (π‘1) = 0
9088, 89eqtrdi 2795 . . . . . . 7 (𝑥 = 1 → (π𝑥) = 0)
9190oveq2d 7271 . . . . . 6 (𝑥 = 1 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑0))
9287, 91breq12d 5083 . . . . 5 (𝑥 = 1 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0)))
9392imbi2d 340 . . . 4 (𝑥 = 1 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))))
94 fveq2 6756 . . . . . 6 (𝑥 = 𝑘 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑘))
95 fveq2 6756 . . . . . . 7 (𝑥 = 𝑘 → (π𝑥) = (π𝑘))
9695oveq2d 7271 . . . . . 6 (𝑥 = 𝑘 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑘)))
9794, 96breq12d 5083 . . . . 5 (𝑥 = 𝑘 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
9897imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)))))
99 fveq2 6756 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑘 + 1)))
100 fveq2 6756 . . . . . . 7 (𝑥 = (𝑘 + 1) → (π𝑥) = (π‘(𝑘 + 1)))
101100oveq2d 7271 . . . . . 6 (𝑥 = (𝑘 + 1) → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π‘(𝑘 + 1))))
10299, 101breq12d 5083 . . . . 5 (𝑥 = (𝑘 + 1) → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
103102imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
104 fveq2 6756 . . . . . 6 (𝑥 = 𝑀 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑀))
105 fveq2 6756 . . . . . . 7 (𝑥 = 𝑀 → (π𝑥) = (π𝑀))
106105oveq2d 7271 . . . . . 6 (𝑥 = 𝑀 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑀)))
107104, 106breq12d 5083 . . . . 5 (𝑥 = 𝑀 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
108107imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))))
109 1z 12280 . . . . . . . 8 1 ∈ ℤ
110 seq1 13662 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
111109, 110ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
112 1nn 11914 . . . . . . . 8 1 ∈ ℕ
113 1nprm 16312 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
114 eleq1 2826 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
115113, 114mtbiri 326 . . . . . . . . . 10 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
116115iffalsed 4467 . . . . . . . . 9 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
117 1ex 10902 . . . . . . . . 9 1 ∈ V
118116, 1, 117fvmpt 6857 . . . . . . . 8 (1 ∈ ℕ → (𝐹‘1) = 1)
119112, 118ax-mp 5 . . . . . . 7 (𝐹‘1) = 1
120111, 119eqtri 2766 . . . . . 6 (seq1( · , 𝐹)‘1) = 1
121 1le1 11533 . . . . . 6 1 ≤ 1
122120, 121eqbrtri 5091 . . . . 5 (seq1( · , 𝐹)‘1) ≤ 1
12321zcnd 12356 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
124123exp0d 13786 . . . . 5 (𝜑 → ((2 · 𝑁)↑0) = 1)
125122, 124breqtrrid 5108 . . . 4 (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))
12615ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
127126nnred 11918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
128127adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
12925ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
130 nnre 11910 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
131130ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → 𝑘 ∈ ℝ)
132 ppicl 26185 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (π𝑘) ∈ ℕ0)
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π𝑘) ∈ ℕ0)
134129, 133nnexpcld 13888 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℕ)
135134nnred 11918 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℝ)
136 nnre 11910 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ)
137 nngt0 11934 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → 0 < (2 · 𝑁))
138136, 137jca 511 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℕ → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
13925, 138syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
140139ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
141 lemul1 11757 . . . . . . . . . 10 (((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ ((2 · 𝑁)↑(π𝑘)) ∈ ℝ ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁))) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
142128, 135, 140, 141syl3anc 1369 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
143 nnz 12272 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
145 ppiprm 26205 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
146144, 145sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
147146oveq2d 7271 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑((π𝑘) + 1)))
148123ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℂ)
149148, 133expp1d 13793 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑((π𝑘) + 1)) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
150147, 149eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
151150breq2d 5082 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
152142, 151bitr4d 281 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
153 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
154 nnuz 12550 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
155153, 154eleqtrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
156 seqp1 13664 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
157155, 156syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
158157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
159 peano2nn 11915 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
160159adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
161 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
162 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
163 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = ((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁)))
164162, 163oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
165161, 164ifbieq1d 4480 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
166 ovex 7288 . . . . . . . . . . . . . . . 16 ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ∈ V
167166, 117ifex 4506 . . . . . . . . . . . . . . 15 if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) ∈ V
168165, 1, 167fvmpt 6857 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
169160, 168syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
170 iftrue 4462 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
171169, 170sylan9eq 2799 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
1726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑁 ∈ ℕ)
173 bposlem1 26337 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
174172, 173sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
175171, 174eqbrtrd 5092 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁))
17614simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
177 ffvelrn 6941 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
178176, 159, 177syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
179178nnred 11918 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
180179adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
18122ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
182 nnre 11910 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
183 nngt0 11934 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑘))
184182, 183jca 511 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
185126, 184syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
186185adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
187 lemul2 11758 . . . . . . . . . . . 12 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘))) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
188180, 181, 186, 187syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
189175, 188mpbid 231 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
190158, 189eqbrtrd 5092 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
191 ffvelrn 6941 . . . . . . . . . . . . 13 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
19215, 159, 191syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
193192nnred 11918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ)
19425adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
195126, 194nnmulcld 11956 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℕ)
196195nnred 11918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ)
197160nnred 11918 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
198 ppicl 26185 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℝ → (π‘(𝑘 + 1)) ∈ ℕ0)
199197, 198syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (π‘(𝑘 + 1)) ∈ ℕ0)
200194, 199nnexpcld 13888 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℕ)
201200nnred 11918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ)
202 letr 10999 . . . . . . . . . . 11 (((seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
203193, 196, 201, 202syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
204203adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
205190, 204mpand 691 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
206152, 205sylbid 239 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
207157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
208 iffalse 4465 . . . . . . . . . . . 12 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
209169, 208sylan9eq 2799 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
210209oveq2d 7271 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) = ((seq1( · , 𝐹)‘𝑘) · 1))
211126adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
212211nncnd 11919 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℂ)
213212mulid1d 10923 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · 1) = (seq1( · , 𝐹)‘𝑘))
214207, 210, 2133eqtrd 2782 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = (seq1( · , 𝐹)‘𝑘))
215 ppinprm 26206 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
216144, 215sylan 579 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
217216oveq2d 7271 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑(π𝑘)))
218214, 217breq12d 5083 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
219218biimprd 247 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
220206, 219pm2.61dan 809 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
221220expcom 413 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
222221a2d 29 . . . 4 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))) → (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
22393, 98, 103, 108, 125, 222nnind 11921 . . 3 (𝑀 ∈ ℕ → (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
22474, 223mpcom 38 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))
225 cxpexp 25728 . . . 4 (((2 · 𝑁) ∈ ℂ ∧ (π𝑀) ∈ ℕ0) → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
226123, 79, 225syl2anc 583 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
22779nn0red 12224 . . . . 5 (𝜑 → (π𝑀) ∈ ℝ)
228 nndivre 11944 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 3 ∈ ℕ) → (𝑀 / 3) ∈ ℝ)
22977, 16, 228sylancl 585 . . . . . 6 (𝜑 → (𝑀 / 3) ∈ ℝ)
230 readdcl 10885 . . . . . 6 (((𝑀 / 3) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑀 / 3) + 2) ∈ ℝ)
231229, 48, 230sylancl 585 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ∈ ℝ)
23274nnnn0d 12223 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
233232nn0ge0d 12226 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
234 ppiub 26257 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (π𝑀) ≤ ((𝑀 / 3) + 2))
23577, 233, 234syl2anc 583 . . . . 5 (𝜑 → (π𝑀) ≤ ((𝑀 / 3) + 2))
23648a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237 flle 13447 . . . . . . . . 9 ((√‘(2 · 𝑁)) ∈ ℝ → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23828, 237syl 17 . . . . . . . 8 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23917, 238eqbrtrid 5105 . . . . . . 7 (𝜑𝑀 ≤ (√‘(2 · 𝑁)))
240 3re 11983 . . . . . . . . . 10 3 ∈ ℝ
241 3pos 12008 . . . . . . . . . 10 0 < 3
242240, 241pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
243242a1i 11 . . . . . . . 8 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
244 lediv1 11770 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
24577, 28, 243, 244syl3anc 1369 . . . . . . 7 (𝜑 → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
246239, 245mpbid 231 . . . . . 6 (𝜑 → (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3))
247229, 83, 236, 246leadd1dd 11519 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
248227, 231, 85, 235, 247letrd 11062 . . . 4 (𝜑 → (π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
249 2t1e2 12066 . . . . . . . 8 (2 · 1) = 2
2506nnge1d 11951 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑁)
251 1re 10906 . . . . . . . . . . 11 1 ∈ ℝ
252 lemul2 11758 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
253251, 50, 252mp3an13 1450 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
25446, 253syl 17 . . . . . . . . 9 (𝜑 → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
255250, 254mpbid 231 . . . . . . . 8 (𝜑 → (2 · 1) ≤ (2 · 𝑁))
256249, 255eqbrtrrid 5106 . . . . . . 7 (𝜑 → 2 ≤ (2 · 𝑁))
25718eluz1i 12519 . . . . . . 7 ((2 · 𝑁) ∈ (ℤ‘2) ↔ ((2 · 𝑁) ∈ ℤ ∧ 2 ≤ (2 · 𝑁)))
25821, 256, 257sylanbrc 582 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ (ℤ‘2))
259 eluz2gt1 12589 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘2) → 1 < (2 · 𝑁))
260258, 259syl 17 . . . . 5 (𝜑 → 1 < (2 · 𝑁))
26122, 260, 227, 85cxpled 25780 . . . 4 (𝜑 → ((π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2) ↔ ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))))
262248, 261mpbid 231 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
263226, 262eqbrtrrd 5094 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
26476, 81, 86, 224, 263letrd 11062 1 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  5c5 11961  9c9 11965  0cn0 12163  cz 12249  cdc 12366  cuz 12511  ...cfz 13168  cfl 13438  seqcseq 13649  cexp 13710  Ccbc 13944  csqrt 14872  cprime 16304   pCnt cpc 16465  𝑐ccxp 25616  πcppi 26148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-ppi 26154
This theorem is referenced by:  bposlem6  26342
  Copyright terms: Public domain W3C validator