MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem5 Structured version   Visualization version   GIF version

Theorem bposlem5 27042
Description: Lemma for bpos 27047. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem5
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos.3 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 id 22 . . . . . . . 8 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
3 5nn 12305 . . . . . . . . . . 11 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12909 . . . . . . . . . . 11 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 586 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12539 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13620 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 14290 . . . . . . . . 9 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
11 pccl 16789 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
122, 10, 11syl2anr 596 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
141, 13pcmptcl 16831 . . . . 5 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
1514simprd 495 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
16 3nn 12298 . . . . 5 3 ∈ ℕ
17 bpos.5 . . . . . 6 𝑀 = (⌊‘(√‘(2 · 𝑁)))
18 2z 12601 . . . . . . . . . . 11 2 ∈ ℤ
196nnzd 12592 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
20 zmulcl 12618 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2118, 19, 20sylancr 586 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℤ)
2221zred 12673 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 2nn 12292 . . . . . . . . . . . 12 2 ∈ ℕ
24 nnmulcl 12243 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2523, 6, 24sylancr 586 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ)
2625nnrpd 13021 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2726rpge0d 13027 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑁))
2822, 27resqrtcld 15371 . . . . . . . 8 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
2928flcld 13770 . . . . . . 7 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
30 sqrt9 15227 . . . . . . . . 9 (√‘9) = 3
31 9re 12318 . . . . . . . . . . . 12 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℝ)
33 10re 12703 . . . . . . . . . . . 12 10 ∈ ℝ
3433a1i 11 . . . . . . . . . . 11 (𝜑10 ∈ ℝ)
35 lep1 12062 . . . . . . . . . . . . . 14 (9 ∈ ℝ → 9 ≤ (9 + 1))
3631, 35ax-mp 5 . . . . . . . . . . . . 13 9 ≤ (9 + 1)
37 9p1e10 12686 . . . . . . . . . . . . 13 (9 + 1) = 10
3836, 37breqtri 5173 . . . . . . . . . . . 12 9 ≤ 10
3938a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ≤ 10)
40 5cn 12307 . . . . . . . . . . . . 13 5 ∈ ℂ
41 2cn 12294 . . . . . . . . . . . . 13 2 ∈ ℂ
42 5t2e10 12784 . . . . . . . . . . . . 13 (5 · 2) = 10
4340, 41, 42mulcomli 11230 . . . . . . . . . . . 12 (2 · 5) = 10
44 eluzle 12842 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
454, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
466nnred 12234 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
47 5re 12306 . . . . . . . . . . . . . . 15 5 ∈ ℝ
48 2re 12293 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
49 2pos 12322 . . . . . . . . . . . . . . . 16 0 < 2
5048, 49pm3.2i 470 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 12074 . . . . . . . . . . . . . . 15 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5247, 50, 51mp3an13 1451 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5346, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5445, 53mpbid 231 . . . . . . . . . . . 12 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
5543, 54eqbrtrrid 5184 . . . . . . . . . . 11 (𝜑10 ≤ (2 · 𝑁))
5632, 34, 22, 39, 55letrd 11378 . . . . . . . . . 10 (𝜑 → 9 ≤ (2 · 𝑁))
57 0re 11223 . . . . . . . . . . . . 13 0 ∈ ℝ
58 9pos 12332 . . . . . . . . . . . . 13 0 < 9
5957, 31, 58ltleii 11344 . . . . . . . . . . . 12 0 ≤ 9
6031, 59pm3.2i 470 . . . . . . . . . . 11 (9 ∈ ℝ ∧ 0 ≤ 9)
6122, 27jca 511 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
62 sqrtle 15214 . . . . . . . . . . 11 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6360, 61, 62sylancr 586 . . . . . . . . . 10 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6456, 63mpbid 231 . . . . . . . . 9 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
6530, 64eqbrtrrid 5184 . . . . . . . 8 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
66 3z 12602 . . . . . . . . 9 3 ∈ ℤ
67 flge 13777 . . . . . . . . 9 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6828, 66, 67sylancl 585 . . . . . . . 8 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6965, 68mpbid 231 . . . . . . 7 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
7066eluz1i 12837 . . . . . . 7 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
7129, 69, 70sylanbrc 582 . . . . . 6 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
7217, 71eqeltrid 2836 . . . . 5 (𝜑𝑀 ∈ (ℤ‘3))
73 eluznn 12909 . . . . 5 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
7416, 72, 73sylancr 586 . . . 4 (𝜑𝑀 ∈ ℕ)
7515, 74ffvelcdmd 7087 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7675nnred 12234 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
7774nnred 12234 . . . . 5 (𝜑𝑀 ∈ ℝ)
78 ppicl 26886 . . . . 5 (𝑀 ∈ ℝ → (π𝑀) ∈ ℕ0)
7977, 78syl 17 . . . 4 (𝜑 → (π𝑀) ∈ ℕ0)
8025, 79nnexpcld 14215 . . 3 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℕ)
8180nnred 12234 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℝ)
82 nndivre 12260 . . . . 5 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
8328, 16, 82sylancl 585 . . . 4 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
84 readdcl 11199 . . . 4 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8583, 48, 84sylancl 585 . . 3 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8622, 27, 85recxpcld 26482 . 2 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
87 fveq2 6891 . . . . . 6 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
88 fveq2 6891 . . . . . . . 8 (𝑥 = 1 → (π𝑥) = (π‘1))
89 ppi1 26919 . . . . . . . 8 (π‘1) = 0
9088, 89eqtrdi 2787 . . . . . . 7 (𝑥 = 1 → (π𝑥) = 0)
9190oveq2d 7428 . . . . . 6 (𝑥 = 1 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑0))
9287, 91breq12d 5161 . . . . 5 (𝑥 = 1 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0)))
9392imbi2d 340 . . . 4 (𝑥 = 1 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))))
94 fveq2 6891 . . . . . 6 (𝑥 = 𝑘 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑘))
95 fveq2 6891 . . . . . . 7 (𝑥 = 𝑘 → (π𝑥) = (π𝑘))
9695oveq2d 7428 . . . . . 6 (𝑥 = 𝑘 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑘)))
9794, 96breq12d 5161 . . . . 5 (𝑥 = 𝑘 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
9897imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)))))
99 fveq2 6891 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑘 + 1)))
100 fveq2 6891 . . . . . . 7 (𝑥 = (𝑘 + 1) → (π𝑥) = (π‘(𝑘 + 1)))
101100oveq2d 7428 . . . . . 6 (𝑥 = (𝑘 + 1) → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π‘(𝑘 + 1))))
10299, 101breq12d 5161 . . . . 5 (𝑥 = (𝑘 + 1) → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
103102imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
104 fveq2 6891 . . . . . 6 (𝑥 = 𝑀 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑀))
105 fveq2 6891 . . . . . . 7 (𝑥 = 𝑀 → (π𝑥) = (π𝑀))
106105oveq2d 7428 . . . . . 6 (𝑥 = 𝑀 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑀)))
107104, 106breq12d 5161 . . . . 5 (𝑥 = 𝑀 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
108107imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))))
109 1z 12599 . . . . . . . 8 1 ∈ ℤ
110 seq1 13986 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
111109, 110ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
112 1nn 12230 . . . . . . . 8 1 ∈ ℕ
113 1nprm 16623 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
114 eleq1 2820 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
115113, 114mtbiri 327 . . . . . . . . . 10 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
116115iffalsed 4539 . . . . . . . . 9 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
117 1ex 11217 . . . . . . . . 9 1 ∈ V
118116, 1, 117fvmpt 6998 . . . . . . . 8 (1 ∈ ℕ → (𝐹‘1) = 1)
119112, 118ax-mp 5 . . . . . . 7 (𝐹‘1) = 1
120111, 119eqtri 2759 . . . . . 6 (seq1( · , 𝐹)‘1) = 1
121 1le1 11849 . . . . . 6 1 ≤ 1
122120, 121eqbrtri 5169 . . . . 5 (seq1( · , 𝐹)‘1) ≤ 1
12321zcnd 12674 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
124123exp0d 14112 . . . . 5 (𝜑 → ((2 · 𝑁)↑0) = 1)
125122, 124breqtrrid 5186 . . . 4 (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))
12615ffvelcdmda 7086 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
127126nnred 12234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
128127adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
12925ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
130 nnre 12226 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
131130ad2antlr 724 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → 𝑘 ∈ ℝ)
132 ppicl 26886 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (π𝑘) ∈ ℕ0)
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π𝑘) ∈ ℕ0)
134129, 133nnexpcld 14215 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℕ)
135134nnred 12234 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℝ)
136 nnre 12226 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ)
137 nngt0 12250 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → 0 < (2 · 𝑁))
138136, 137jca 511 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℕ → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
13925, 138syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
140139ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
141 lemul1 12073 . . . . . . . . . 10 (((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ ((2 · 𝑁)↑(π𝑘)) ∈ ℝ ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁))) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
142128, 135, 140, 141syl3anc 1370 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
143 nnz 12586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
145 ppiprm 26906 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
146144, 145sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
147146oveq2d 7428 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑((π𝑘) + 1)))
148123ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℂ)
149148, 133expp1d 14119 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑((π𝑘) + 1)) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
150147, 149eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
151150breq2d 5160 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
152142, 151bitr4d 282 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
153 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
154 nnuz 12872 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
155153, 154eleqtrdi 2842 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
156 seqp1 13988 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
157155, 156syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
158157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
159 peano2nn 12231 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
160159adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
161 eleq1 2820 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
162 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
163 oveq1 7419 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = ((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁)))
164162, 163oveq12d 7430 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
165161, 164ifbieq1d 4552 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
166 ovex 7445 . . . . . . . . . . . . . . . 16 ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ∈ V
167166, 117ifex 4578 . . . . . . . . . . . . . . 15 if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) ∈ V
168165, 1, 167fvmpt 6998 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
169160, 168syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
170 iftrue 4534 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
171169, 170sylan9eq 2791 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
1726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑁 ∈ ℕ)
173 bposlem1 27038 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
174172, 173sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
175171, 174eqbrtrd 5170 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁))
17614simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
177 ffvelcdm 7083 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
178176, 159, 177syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
179178nnred 12234 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
180179adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
18122ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
182 nnre 12226 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
183 nngt0 12250 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑘))
184182, 183jca 511 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
185126, 184syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
186185adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
187 lemul2 12074 . . . . . . . . . . . 12 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘))) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
188180, 181, 186, 187syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
189175, 188mpbid 231 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
190158, 189eqbrtrd 5170 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
191 ffvelcdm 7083 . . . . . . . . . . . . 13 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
19215, 159, 191syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
193192nnred 12234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ)
19425adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
195126, 194nnmulcld 12272 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℕ)
196195nnred 12234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ)
197160nnred 12234 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
198 ppicl 26886 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℝ → (π‘(𝑘 + 1)) ∈ ℕ0)
199197, 198syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (π‘(𝑘 + 1)) ∈ ℕ0)
200194, 199nnexpcld 14215 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℕ)
201200nnred 12234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ)
202 letr 11315 . . . . . . . . . . 11 (((seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
203193, 196, 201, 202syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
204203adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
205190, 204mpand 692 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
206152, 205sylbid 239 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
207157adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
208 iffalse 4537 . . . . . . . . . . . 12 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
209169, 208sylan9eq 2791 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
210209oveq2d 7428 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) = ((seq1( · , 𝐹)‘𝑘) · 1))
211126adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
212211nncnd 12235 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℂ)
213212mulridd 11238 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · 1) = (seq1( · , 𝐹)‘𝑘))
214207, 210, 2133eqtrd 2775 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = (seq1( · , 𝐹)‘𝑘))
215 ppinprm 26907 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
216144, 215sylan 579 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
217216oveq2d 7428 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑(π𝑘)))
218214, 217breq12d 5161 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
219218biimprd 247 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
220206, 219pm2.61dan 810 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
221220expcom 413 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
222221a2d 29 . . . 4 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))) → (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
22393, 98, 103, 108, 125, 222nnind 12237 . . 3 (𝑀 ∈ ℕ → (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
22474, 223mpcom 38 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))
225 cxpexp 26427 . . . 4 (((2 · 𝑁) ∈ ℂ ∧ (π𝑀) ∈ ℕ0) → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
226123, 79, 225syl2anc 583 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
22779nn0red 12540 . . . . 5 (𝜑 → (π𝑀) ∈ ℝ)
228 nndivre 12260 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 3 ∈ ℕ) → (𝑀 / 3) ∈ ℝ)
22977, 16, 228sylancl 585 . . . . . 6 (𝜑 → (𝑀 / 3) ∈ ℝ)
230 readdcl 11199 . . . . . 6 (((𝑀 / 3) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑀 / 3) + 2) ∈ ℝ)
231229, 48, 230sylancl 585 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ∈ ℝ)
23274nnnn0d 12539 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
233232nn0ge0d 12542 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
234 ppiub 26958 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (π𝑀) ≤ ((𝑀 / 3) + 2))
23577, 233, 234syl2anc 583 . . . . 5 (𝜑 → (π𝑀) ≤ ((𝑀 / 3) + 2))
23648a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237 flle 13771 . . . . . . . . 9 ((√‘(2 · 𝑁)) ∈ ℝ → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23828, 237syl 17 . . . . . . . 8 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23917, 238eqbrtrid 5183 . . . . . . 7 (𝜑𝑀 ≤ (√‘(2 · 𝑁)))
240 3re 12299 . . . . . . . . . 10 3 ∈ ℝ
241 3pos 12324 . . . . . . . . . 10 0 < 3
242240, 241pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
243242a1i 11 . . . . . . . 8 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
244 lediv1 12086 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
24577, 28, 243, 244syl3anc 1370 . . . . . . 7 (𝜑 → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
246239, 245mpbid 231 . . . . . 6 (𝜑 → (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3))
247229, 83, 236, 246leadd1dd 11835 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
248227, 231, 85, 235, 247letrd 11378 . . . 4 (𝜑 → (π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
249 2t1e2 12382 . . . . . . . 8 (2 · 1) = 2
2506nnge1d 12267 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑁)
251 1re 11221 . . . . . . . . . . 11 1 ∈ ℝ
252 lemul2 12074 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
253251, 50, 252mp3an13 1451 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
25446, 253syl 17 . . . . . . . . 9 (𝜑 → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
255250, 254mpbid 231 . . . . . . . 8 (𝜑 → (2 · 1) ≤ (2 · 𝑁))
256249, 255eqbrtrrid 5184 . . . . . . 7 (𝜑 → 2 ≤ (2 · 𝑁))
25718eluz1i 12837 . . . . . . 7 ((2 · 𝑁) ∈ (ℤ‘2) ↔ ((2 · 𝑁) ∈ ℤ ∧ 2 ≤ (2 · 𝑁)))
25821, 256, 257sylanbrc 582 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ (ℤ‘2))
259 eluz2gt1 12911 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘2) → 1 < (2 · 𝑁))
260258, 259syl 17 . . . . 5 (𝜑 → 1 < (2 · 𝑁))
26122, 260, 227, 85cxpled 26479 . . . 4 (𝜑 → ((π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2) ↔ ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))))
262248, 261mpbid 231 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
263226, 262eqbrtrrd 5172 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
26476, 81, 86, 224, 263letrd 11378 1 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  ifcif 4528   class class class wbr 5148  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121   < clt 11255  cle 11256   / cdiv 11878  cn 12219  2c2 12274  3c3 12275  5c5 12277  9c9 12281  0cn0 12479  cz 12565  cdc 12684  cuz 12829  ...cfz 13491  cfl 13762  seqcseq 13973  cexp 14034  Ccbc 14269  csqrt 15187  cprime 16615   pCnt cpc 16776  𝑐ccxp 26315  πcppi 26849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-sin 16020  df-cos 16021  df-pi 16023  df-dvds 16205  df-gcd 16443  df-prm 16616  df-pc 16777  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-submnd 18709  df-mulg 18991  df-cntz 19226  df-cmn 19695  df-psmet 21140  df-xmet 21141  df-met 21142  df-bl 21143  df-mopn 21144  df-fbas 21145  df-fg 21146  df-cnfld 21149  df-top 22629  df-topon 22646  df-topsp 22668  df-bases 22682  df-cld 22756  df-ntr 22757  df-cls 22758  df-nei 22835  df-lp 22873  df-perf 22874  df-cn 22964  df-cnp 22965  df-haus 23052  df-tx 23299  df-hmeo 23492  df-fil 23583  df-fm 23675  df-flim 23676  df-flf 23677  df-xms 24059  df-ms 24060  df-tms 24061  df-cncf 24631  df-limc 25628  df-dv 25629  df-log 26316  df-cxp 26317  df-ppi 26855
This theorem is referenced by:  bposlem6  27043
  Copyright terms: Public domain W3C validator