Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0o1gt2ALTV Structured version   Visualization version   GIF version

Theorem nn0o1gt2ALTV 46947
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2ALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2ALTV
StepHypRef Expression
1 elnn0 12490 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn1uz2 12925 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
3 orc 866 . . . . . . 7 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
43a1d 25 . . . . . 6 (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
5 2z 12610 . . . . . . . 8 2 ∈ ℤ
65eluz1i 12846 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
7 2re 12302 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 zre 12578 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
108, 9leloed 11373 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
11 olc 867 . . . . . . . . . . 11 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
1211a1d 25 . . . . . . . . . 10 (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
13 eleq1 2816 . . . . . . . . . . . 12 (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
1413eqcoms 2735 . . . . . . . . . . 11 (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
15 2noddALTV 46946 . . . . . . . . . . . 12 2 ∉ Odd
16 df-nel 3042 . . . . . . . . . . . . 13 (2 ∉ Odd ↔ ¬ 2 ∈ Odd )
17 pm2.21 123 . . . . . . . . . . . . 13 (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1816, 17sylbi 216 . . . . . . . . . . . 12 (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1915, 18ax-mp 5 . . . . . . . . . . 11 (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
2014, 19syl6bi 253 . . . . . . . . . 10 (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2112, 20jaoi 856 . . . . . . . . 9 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2210, 21syl6bi 253 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))))
2322imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
246, 23sylbi 216 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
254, 24jaoi 856 . . . . 5 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
262, 25sylbi 216 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
27 eleq1 2816 . . . . 5 (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd ))
28 0noddALTV 46942 . . . . . 6 0 ∉ Odd
29 df-nel 3042 . . . . . . 7 (0 ∉ Odd ↔ ¬ 0 ∈ Odd )
30 pm2.21 123 . . . . . . 7 (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3129, 30sylbi 216 . . . . . 6 (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3228, 31ax-mp 5 . . . . 5 (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
3327, 32syl6bi 253 . . . 4 (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3426, 33jaoi 856 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
351, 34sylbi 216 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3635imp 406 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wnel 3041   class class class wbr 5142  cfv 6542  cr 11123  0cc0 11124  1c1 11125   < clt 11264  cle 11265  cn 12228  2c2 12283  0cn0 12488  cz 12574  cuz 12838   Odd codd 46878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-n0 12489  df-z 12575  df-uz 12839  df-even 46879  df-odd 46880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator