| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0o1gt2ALTV | Structured version Visualization version GIF version | ||
| Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| nn0o1gt2ALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | elnn1uz2 12860 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 3 | orc 867 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
| 4 | 3 | a1d 25 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 5 | 2z 12541 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 6 | 5 | eluz1i 12777 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) |
| 7 | 2re 12236 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 9 | zre 12509 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 10 | 8, 9 | leloed 11293 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁))) |
| 11 | olc 868 | . . . . . . . . . . 11 ⊢ (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
| 12 | 11 | a1d 25 | . . . . . . . . . 10 ⊢ (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 13 | eleq1 2816 | . . . . . . . . . . . 12 ⊢ (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) | |
| 14 | 13 | eqcoms 2737 | . . . . . . . . . . 11 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) |
| 15 | 2noddALTV 47687 | . . . . . . . . . . . 12 ⊢ 2 ∉ Odd | |
| 16 | df-nel 3030 | . . . . . . . . . . . . 13 ⊢ (2 ∉ Odd ↔ ¬ 2 ∈ Odd ) | |
| 17 | pm2.21 123 | . . . . . . . . . . . . 13 ⊢ (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
| 18 | 16, 17 | sylbi 217 | . . . . . . . . . . . 12 ⊢ (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 19 | 15, 18 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
| 20 | 14, 19 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 21 | 12, 20 | jaoi 857 | . . . . . . . . 9 ⊢ ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 22 | 10, 21 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))) |
| 23 | 22 | imp 406 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 24 | 6, 23 | sylbi 217 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 25 | 4, 24 | jaoi 857 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 26 | 2, 25 | sylbi 217 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 27 | eleq1 2816 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd )) | |
| 28 | 0noddALTV 47683 | . . . . . 6 ⊢ 0 ∉ Odd | |
| 29 | df-nel 3030 | . . . . . . 7 ⊢ (0 ∉ Odd ↔ ¬ 0 ∈ Odd ) | |
| 30 | pm2.21 123 | . . . . . . 7 ⊢ (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
| 31 | 29, 30 | sylbi 217 | . . . . . 6 ⊢ (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 32 | 28, 31 | ax-mp 5 | . . . . 5 ⊢ (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
| 33 | 27, 32 | biimtrdi 253 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 34 | 26, 33 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 35 | 1, 34 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
| 36 | 35 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5102 ‘cfv 6499 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ≤ cle 11185 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 Odd codd 47619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-even 47620 df-odd 47621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |