Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0o1gt2ALTV Structured version   Visualization version   GIF version

Theorem nn0o1gt2ALTV 47688
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2ALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2ALTV
StepHypRef Expression
1 elnn0 12420 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn1uz2 12860 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
3 orc 867 . . . . . . 7 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
43a1d 25 . . . . . 6 (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
5 2z 12541 . . . . . . . 8 2 ∈ ℤ
65eluz1i 12777 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
7 2re 12236 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 zre 12509 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
108, 9leloed 11293 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
11 olc 868 . . . . . . . . . . 11 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
1211a1d 25 . . . . . . . . . 10 (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
13 eleq1 2816 . . . . . . . . . . . 12 (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
1413eqcoms 2737 . . . . . . . . . . 11 (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
15 2noddALTV 47687 . . . . . . . . . . . 12 2 ∉ Odd
16 df-nel 3030 . . . . . . . . . . . . 13 (2 ∉ Odd ↔ ¬ 2 ∈ Odd )
17 pm2.21 123 . . . . . . . . . . . . 13 (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1816, 17sylbi 217 . . . . . . . . . . . 12 (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1915, 18ax-mp 5 . . . . . . . . . . 11 (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
2014, 19biimtrdi 253 . . . . . . . . . 10 (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2112, 20jaoi 857 . . . . . . . . 9 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2210, 21biimtrdi 253 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))))
2322imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
246, 23sylbi 217 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
254, 24jaoi 857 . . . . 5 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
262, 25sylbi 217 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
27 eleq1 2816 . . . . 5 (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd ))
28 0noddALTV 47683 . . . . . 6 0 ∉ Odd
29 df-nel 3030 . . . . . . 7 (0 ∉ Odd ↔ ¬ 0 ∈ Odd )
30 pm2.21 123 . . . . . . 7 (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3129, 30sylbi 217 . . . . . 6 (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3228, 31ax-mp 5 . . . . 5 (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
3327, 32biimtrdi 253 . . . 4 (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3426, 33jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
351, 34sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3635imp 406 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wnel 3029   class class class wbr 5102  cfv 6499  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769   Odd codd 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-even 47620  df-odd 47621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator