Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0o1gt2ALTV Structured version   Visualization version   GIF version

Theorem nn0o1gt2ALTV 47302
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2ALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2ALTV
StepHypRef Expression
1 elnn0 12520 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn1uz2 12955 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
3 orc 865 . . . . . . 7 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
43a1d 25 . . . . . 6 (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
5 2z 12640 . . . . . . . 8 2 ∈ ℤ
65eluz1i 12876 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
7 2re 12332 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 zre 12608 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
108, 9leloed 11398 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
11 olc 866 . . . . . . . . . . 11 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
1211a1d 25 . . . . . . . . . 10 (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
13 eleq1 2814 . . . . . . . . . . . 12 (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
1413eqcoms 2734 . . . . . . . . . . 11 (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd ))
15 2noddALTV 47301 . . . . . . . . . . . 12 2 ∉ Odd
16 df-nel 3037 . . . . . . . . . . . . 13 (2 ∉ Odd ↔ ¬ 2 ∈ Odd )
17 pm2.21 123 . . . . . . . . . . . . 13 (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1816, 17sylbi 216 . . . . . . . . . . . 12 (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
1915, 18ax-mp 5 . . . . . . . . . . 11 (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
2014, 19biimtrdi 252 . . . . . . . . . 10 (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2112, 20jaoi 855 . . . . . . . . 9 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
2210, 21biimtrdi 252 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))))
2322imp 405 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
246, 23sylbi 216 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
254, 24jaoi 855 . . . . 5 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
262, 25sylbi 216 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
27 eleq1 2814 . . . . 5 (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd ))
28 0noddALTV 47297 . . . . . 6 0 ∉ Odd
29 df-nel 3037 . . . . . . 7 (0 ∉ Odd ↔ ¬ 0 ∈ Odd )
30 pm2.21 123 . . . . . . 7 (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3129, 30sylbi 216 . . . . . 6 (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3228, 31ax-mp 5 . . . . 5 (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))
3327, 32biimtrdi 252 . . . 4 (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3426, 33jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
351, 34sylbi 216 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))
3635imp 405 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wnel 3036   class class class wbr 5145  cfv 6546  cr 11148  0cc0 11149  1c1 11150   < clt 11289  cle 11290  cn 12258  2c2 12313  0cn0 12518  cz 12604  cuz 12868   Odd codd 47233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-even 47234  df-odd 47235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator