![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0o1gt2ALTV | Structured version Visualization version GIF version |
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
Ref | Expression |
---|---|
nn0o1gt2ALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12526 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | elnn1uz2 12965 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
3 | orc 867 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
4 | 3 | a1d 25 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
5 | 2z 12647 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
6 | 5 | eluz1i 12884 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) |
7 | 2re 12338 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
9 | zre 12615 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | 8, 9 | leloed 11402 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁))) |
11 | olc 868 | . . . . . . . . . . 11 ⊢ (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
12 | 11 | a1d 25 | . . . . . . . . . 10 ⊢ (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
13 | eleq1 2827 | . . . . . . . . . . . 12 ⊢ (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) | |
14 | 13 | eqcoms 2743 | . . . . . . . . . . 11 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) |
15 | 2noddALTV 47618 | . . . . . . . . . . . 12 ⊢ 2 ∉ Odd | |
16 | df-nel 3045 | . . . . . . . . . . . . 13 ⊢ (2 ∉ Odd ↔ ¬ 2 ∈ Odd ) | |
17 | pm2.21 123 | . . . . . . . . . . . . 13 ⊢ (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
18 | 16, 17 | sylbi 217 | . . . . . . . . . . . 12 ⊢ (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
19 | 15, 18 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
20 | 14, 19 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
21 | 12, 20 | jaoi 857 | . . . . . . . . 9 ⊢ ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
22 | 10, 21 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))) |
23 | 22 | imp 406 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
24 | 6, 23 | sylbi 217 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
25 | 4, 24 | jaoi 857 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
26 | 2, 25 | sylbi 217 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
27 | eleq1 2827 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd )) | |
28 | 0noddALTV 47614 | . . . . . 6 ⊢ 0 ∉ Odd | |
29 | df-nel 3045 | . . . . . . 7 ⊢ (0 ∉ Odd ↔ ¬ 0 ∈ Odd ) | |
30 | pm2.21 123 | . . . . . . 7 ⊢ (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
31 | 29, 30 | sylbi 217 | . . . . . 6 ⊢ (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
32 | 28, 31 | ax-mp 5 | . . . . 5 ⊢ (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
33 | 27, 32 | biimtrdi 253 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
34 | 26, 33 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
35 | 1, 34 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
36 | 35 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 class class class wbr 5148 ‘cfv 6563 ℝcr 11152 0cc0 11153 1c1 11154 < clt 11293 ≤ cle 11294 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 Odd codd 47550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-even 47551 df-odd 47552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |