![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzmn | Structured version Visualization version GIF version |
Description: Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
eluzmn | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ) | |
2 | simpr 483 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
3 | 2 | nn0zd 12630 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
4 | 1, 3 | zsubcld 12717 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑀 − 𝑁) ∈ ℤ) |
5 | 1 | zred 12712 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ) |
6 | 2 | nn0red 12579 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
7 | 5, 6 | readdcld 11284 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ) |
8 | nn0addge1 12564 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑁)) | |
9 | 5, 8 | sylancom 586 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑁)) |
10 | 5, 7, 6, 9 | lesub1dd 11871 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑀 − 𝑁) ≤ ((𝑀 + 𝑁) − 𝑁)) |
11 | 5 | recnd 11283 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ) |
12 | 6 | recnd 11283 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
13 | 11, 12 | pncand 11613 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
14 | 10, 13 | breqtrd 5171 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑀 − 𝑁) ≤ 𝑀) |
15 | eluz2 12874 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁)) ↔ ((𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 𝑁) ≤ 𝑀)) | |
16 | 4, 1, 14, 15 | syl3anbrc 1340 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 + caddc 11152 ≤ cle 11290 − cmin 11485 ℕ0cn0 12518 ℤcz 12604 ℤ≥cuz 12868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 |
This theorem is referenced by: prmdvdsbc 16723 freshmansdream 21568 crctcshwlkn0lem2 29742 clwwlkccatlem 29919 clwwlkinwwlk 29970 signsvfn 34441 fsum2dsub 34466 |
Copyright terms: Public domain | W3C validator |