![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzuzle | Structured version Visualization version GIF version |
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
Ref | Expression |
---|---|
eluzuzle | ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12824 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | |
2 | simpll 764 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℤ) | |
3 | simpr2 1192 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℤ) | |
4 | zre 12558 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | 4 | ad2antrr 723 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℝ) |
6 | zre 12558 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
7 | 6 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐴 ∈ ℝ) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ∈ ℝ) |
9 | zre 12558 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
10 | 9 | 3ad2ant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ ℝ) |
11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
12 | simplr 766 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐴) | |
13 | simpr3 1193 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ≤ 𝐶) | |
14 | 5, 8, 11, 12, 13 | letrd 11367 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐶) |
15 | eluz2 12824 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
16 | 2, 3, 14, 15 | syl3anbrc 1340 | . . 3 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ (ℤ≥‘𝐵)) |
17 | 16 | ex 412 | . 2 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵))) |
18 | 1, 17 | biimtrid 241 | 1 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 ℝcr 11104 ≤ cle 11245 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-pre-lttri 11179 ax-pre-lttrn 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 |
This theorem is referenced by: eluz2nn 12864 eluz4eluz2 12865 uzuzle23 12869 eluzge3nn 12870 setsstruct 17105 wwlksubclwwlk 29735 smonoord 46490 wtgoldbnnsum4prm 46921 bgoldbnnsum3prm 46923 |
Copyright terms: Public domain | W3C validator |