| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzuzle | Structured version Visualization version GIF version | ||
| Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| eluzuzle | ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 12744 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | |
| 2 | simpll 766 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℤ) | |
| 3 | simpr2 1196 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℤ) | |
| 4 | zre 12478 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 5 | 4 | ad2antrr 726 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℝ) |
| 6 | zre 12478 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 7 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐴 ∈ ℝ) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ∈ ℝ) |
| 9 | zre 12478 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
| 10 | 9 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ ℝ) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
| 12 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐴) | |
| 13 | simpr3 1197 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ≤ 𝐶) | |
| 14 | 5, 8, 11, 12, 13 | letrd 11276 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐶) |
| 15 | eluz2 12744 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 16 | 2, 3, 14, 15 | syl3anbrc 1344 | . . 3 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| 18 | 1, 17 | biimtrid 242 | 1 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 ℝcr 11011 ≤ cle 11153 ℤcz 12474 ℤ≥cuz 12738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-neg 11353 df-z 12475 df-uz 12739 |
| This theorem is referenced by: uzuzle23 12788 uzuzle24 12789 uzuzle34 12790 eluz2nn 12792 setsstruct 17093 wwlksubclwwlk 30045 smonoord 47476 wtgoldbnnsum4prm 47907 bgoldbnnsum3prm 47909 |
| Copyright terms: Public domain | W3C validator |