|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eluzuzle | Structured version Visualization version GIF version | ||
| Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) | 
| Ref | Expression | 
|---|---|
| eluzuzle | ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluz2 12885 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | |
| 2 | simpll 766 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℤ) | |
| 3 | simpr2 1195 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℤ) | |
| 4 | zre 12619 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 5 | 4 | ad2antrr 726 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℝ) | 
| 6 | zre 12619 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 7 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐴 ∈ ℝ) | 
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ∈ ℝ) | 
| 9 | zre 12619 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
| 10 | 9 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ ℝ) | 
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℝ) | 
| 12 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐴) | |
| 13 | simpr3 1196 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ≤ 𝐶) | |
| 14 | 5, 8, 11, 12, 13 | letrd 11419 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐶) | 
| 15 | eluz2 12885 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 16 | 2, 3, 14, 15 | syl3anbrc 1343 | . . 3 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ (ℤ≥‘𝐵)) | 
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵))) | 
| 18 | 1, 17 | biimtrid 242 | 1 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 ℝcr 11155 ≤ cle 11297 ℤcz 12615 ℤ≥cuz 12879 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-neg 11496 df-z 12616 df-uz 12880 | 
| This theorem is referenced by: eluz2nn 12925 eluz4eluz2 12926 eluz4eluz3 12927 uzuzle23 12932 eluzge3nn 12933 setsstruct 17214 wwlksubclwwlk 30078 smonoord 47363 wtgoldbnnsum4prm 47794 bgoldbnnsum3prm 47796 | 
| Copyright terms: Public domain | W3C validator |