MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzuzle Structured version   Visualization version   GIF version

Theorem eluzuzle 12912
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 12909 . 2 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
2 simpll 766 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
3 simpr2 1195 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
4 zre 12643 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54ad2antrr 725 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℝ)
6 zre 12643 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
763ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐴 ∈ ℝ)
87adantl 481 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴 ∈ ℝ)
9 zre 12643 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
1093ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
1110adantl 481 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℝ)
12 simplr 768 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐴)
13 simpr3 1196 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴𝐶)
145, 8, 11, 12, 13letrd 11447 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐶)
15 eluz2 12909 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
162, 3, 14, 15syl3anbrc 1343 . . 3 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ (ℤ𝐵))
1716ex 412 . 2 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ (ℤ𝐵)))
181, 17biimtrid 242 1 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  cfv 6573  cr 11183  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  eluz2nn  12949  eluz4eluz2  12950  uzuzle23  12954  eluzge3nn  12955  setsstruct  17223  wwlksubclwwlk  30090  smonoord  47245  wtgoldbnnsum4prm  47676  bgoldbnnsum3prm  47678
  Copyright terms: Public domain W3C validator