![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzuzle | Structured version Visualization version GIF version |
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
Ref | Expression |
---|---|
eluzuzle | ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12861 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | |
2 | simpll 765 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℤ) | |
3 | simpr2 1192 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℤ) | |
4 | zre 12595 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | 4 | ad2antrr 724 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℝ) |
6 | zre 12595 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
7 | 6 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐴 ∈ ℝ) |
8 | 7 | adantl 480 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ∈ ℝ) |
9 | zre 12595 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
10 | 9 | 3ad2ant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ ℝ) |
11 | 10 | adantl 480 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
12 | simplr 767 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐴) | |
13 | simpr3 1193 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ≤ 𝐶) | |
14 | 5, 8, 11, 12, 13 | letrd 11403 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐶) |
15 | eluz2 12861 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
16 | 2, 3, 14, 15 | syl3anbrc 1340 | . . 3 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ (ℤ≥‘𝐵)) |
17 | 16 | ex 411 | . 2 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵))) |
18 | 1, 17 | biimtrid 241 | 1 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 ℝcr 11139 ≤ cle 11281 ℤcz 12591 ℤ≥cuz 12855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-neg 11479 df-z 12592 df-uz 12856 |
This theorem is referenced by: eluz2nn 12901 eluz4eluz2 12902 uzuzle23 12906 eluzge3nn 12907 setsstruct 17148 wwlksubclwwlk 29940 smonoord 46848 wtgoldbnnsum4prm 47279 bgoldbnnsum3prm 47281 |
Copyright terms: Public domain | W3C validator |