Proof of Theorem sin01gt0
Step | Hyp | Ref
| Expression |
1 | | 0xr 11022 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
2 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
3 | | elioc2 13142 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
4 | 1, 2, 3 | mp2an 689 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
5 | 4 | simp1bi 1144 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
6 | | 3nn0 12251 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
7 | | reexpcl 13799 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℕ0) → (𝐴↑3) ∈ ℝ) |
8 | 5, 6, 7 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℝ) |
9 | | 3re 12053 |
. . . . . 6
⊢ 3 ∈
ℝ |
10 | | 3ne0 12079 |
. . . . . 6
⊢ 3 ≠
0 |
11 | | redivcl 11694 |
. . . . . 6
⊢ (((𝐴↑3) ∈ ℝ ∧ 3
∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑3) / 3) ∈
ℝ) |
12 | 9, 10, 11 | mp3an23 1452 |
. . . . 5
⊢ ((𝐴↑3) ∈ ℝ →
((𝐴↑3) / 3) ∈
ℝ) |
13 | 8, 12 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℝ) |
14 | | 3z 12353 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
15 | | expgt0 13816 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℤ ∧ 0 < 𝐴)
→ 0 < (𝐴↑3)) |
16 | 14, 15 | mp3an2 1448 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴↑3)) |
17 | 16 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → 0 < (𝐴↑3)) |
18 | 4, 17 | sylbi 216 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴↑3)) |
19 | | 0lt1 11497 |
. . . . . . . 8
⊢ 0 <
1 |
20 | 2, 19 | pm3.2i 471 |
. . . . . . 7
⊢ (1 ∈
ℝ ∧ 0 < 1) |
21 | | 3pos 12078 |
. . . . . . . 8
⊢ 0 <
3 |
22 | 9, 21 | pm3.2i 471 |
. . . . . . 7
⊢ (3 ∈
ℝ ∧ 0 < 3) |
23 | | 1lt3 12146 |
. . . . . . . 8
⊢ 1 <
3 |
24 | | ltdiv2 11861 |
. . . . . . . 8
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧
((𝐴↑3) ∈ ℝ
∧ 0 < (𝐴↑3)))
→ (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1))) |
25 | 23, 24 | mpbii 232 |
. . . . . . 7
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧
((𝐴↑3) ∈ ℝ
∧ 0 < (𝐴↑3)))
→ ((𝐴↑3) / 3)
< ((𝐴↑3) /
1)) |
26 | 20, 22, 25 | mp3an12 1450 |
. . . . . 6
⊢ (((𝐴↑3) ∈ ℝ ∧ 0
< (𝐴↑3)) →
((𝐴↑3) / 3) <
((𝐴↑3) /
1)) |
27 | 8, 18, 26 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1)) |
28 | 8 | recnd 11003 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℂ) |
29 | 28 | div1d 11743 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3)) |
30 | 27, 29 | breqtrd 5100 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3)) |
31 | | 1nn0 12249 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 1 ∈
ℕ0) |
33 | | 1le3 12185 |
. . . . . . . 8
⊢ 1 ≤
3 |
34 | | 1z 12350 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
35 | 34 | eluz1i 12590 |
. . . . . . . 8
⊢ (3 ∈
(ℤ≥‘1) ↔ (3 ∈ ℤ ∧ 1 ≤
3)) |
36 | 14, 33, 35 | mpbir2an 708 |
. . . . . . 7
⊢ 3 ∈
(ℤ≥‘1) |
37 | 36 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 3 ∈
(ℤ≥‘1)) |
38 | 4 | simp2bi 1145 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
𝐴) |
39 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
40 | | ltle 11063 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
41 | 39, 5, 40 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (0 <
𝐴 → 0 ≤ 𝐴)) |
42 | 38, 41 | mpd 15 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 0 ≤
𝐴) |
43 | 4 | simp3bi 1146 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1) |
44 | 5, 32, 37, 42, 43 | leexp2rd 13972 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1)) |
45 | 5 | recnd 11003 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℂ) |
46 | 45 | exp1d 13859 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴) |
47 | 44, 46 | breqtrd 5100 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴) |
48 | 13, 8, 5, 30, 47 | ltletrd 11135 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴) |
49 | 13, 5 | posdifd 11562 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3)))) |
50 | 48, 49 | mpbid 231 |
. 2
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴 − ((𝐴↑3) / 3))) |
51 | | sin01bnd 15894 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) |
52 | 51 | simpld 495 |
. 2
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) |
53 | 5, 13 | resubcld 11403 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈
ℝ) |
54 | 5 | resincld 15852 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) ∈
ℝ) |
55 | | lttr 11051 |
. . 3
⊢ ((0
∈ ℝ ∧ (𝐴
− ((𝐴↑3) / 3))
∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 <
(sin‘𝐴))) |
56 | 39, 53, 54, 55 | mp3an2i 1465 |
. 2
⊢ (𝐴 ∈ (0(,]1) → ((0 <
(𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 <
(sin‘𝐴))) |
57 | 50, 52, 56 | mp2and 696 |
1
⊢ (𝐴 ∈ (0(,]1) → 0 <
(sin‘𝐴)) |