MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01gt0 Structured version   Visualization version   GIF version

Theorem sin01gt0 15751
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 10880 . . . . . . . 8 0 ∈ ℝ*
2 1re 10833 . . . . . . . 8 1 ∈ ℝ
3 elioc2 12998 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 692 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1147 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 12108 . . . . . 6 3 ∈ ℕ0
7 reexpcl 13652 . . . . . 6 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 589 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 3re 11910 . . . . . 6 3 ∈ ℝ
10 3ne0 11936 . . . . . 6 3 ≠ 0
11 redivcl 11551 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑3) / 3) ∈ ℝ)
129, 10, 11mp3an23 1455 . . . . 5 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 3) ∈ ℝ)
138, 12syl 17 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
14 3z 12210 . . . . . . . . 9 3 ∈ ℤ
15 expgt0 13668 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
1614, 15mp3an2 1451 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
17163adant3 1134 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑3))
184, 17sylbi 220 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑3))
19 0lt1 11354 . . . . . . . 8 0 < 1
202, 19pm3.2i 474 . . . . . . 7 (1 ∈ ℝ ∧ 0 < 1)
21 3pos 11935 . . . . . . . 8 0 < 3
229, 21pm3.2i 474 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
23 1lt3 12003 . . . . . . . 8 1 < 3
24 ltdiv2 11718 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1)))
2523, 24mpbii 236 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
2620, 22, 25mp3an12 1453 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3)) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
278, 18, 26syl2anc 587 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
288recnd 10861 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
2928div1d 11600 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3))
3027, 29breqtrd 5079 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3))
31 1nn0 12106 . . . . . . 7 1 ∈ ℕ0
3231a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 1 ∈ ℕ0)
33 1le3 12042 . . . . . . . 8 1 ≤ 3
34 1z 12207 . . . . . . . . 9 1 ∈ ℤ
3534eluz1i 12446 . . . . . . . 8 (3 ∈ (ℤ‘1) ↔ (3 ∈ ℤ ∧ 1 ≤ 3))
3614, 33, 35mpbir2an 711 . . . . . . 7 3 ∈ (ℤ‘1)
3736a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 3 ∈ (ℤ‘1))
384simp2bi 1148 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
39 0re 10835 . . . . . . . 8 0 ∈ ℝ
40 ltle 10921 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
4139, 5, 40sylancr 590 . . . . . . 7 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
4238, 41mpd 15 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
434simp3bi 1149 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
445, 32, 37, 42, 43leexp2rd 13824 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1))
455recnd 10861 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
4645exp1d 13711 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴)
4744, 46breqtrd 5079 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴)
4813, 8, 5, 30, 47ltletrd 10992 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴)
4913, 5posdifd 11419 . . 3 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3))))
5048, 49mpbid 235 . 2 (𝐴 ∈ (0(,]1) → 0 < (𝐴 − ((𝐴↑3) / 3)))
51 sin01bnd 15746 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
5251simpld 498 . 2 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))
535, 13resubcld 11260 . . 3 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ)
545resincld 15704 . . 3 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
55 lttr 10909 . . 3 ((0 ∈ ℝ ∧ (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5639, 53, 54, 55mp3an2i 1468 . 2 (𝐴 ∈ (0(,]1) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5750, 52, 56mp2and 699 1 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  3c3 11886  0cn0 12090  cz 12176  cuz 12438  (,]cioc 12936  cexp 13635  sincsin 15625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ioc 12940  df-ico 12941  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-fac 13840  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631
This theorem is referenced by:  sin02gt0  15753  sincos1sgn  15754  sincos4thpi  25403
  Copyright terms: Public domain W3C validator