MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01gt0 Structured version   Visualization version   GIF version

Theorem sin01gt0 15899
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
2 1re 10975 . . . . . . . 8 1 ∈ ℝ
3 elioc2 13142 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 689 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1144 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 12251 . . . . . 6 3 ∈ ℕ0
7 reexpcl 13799 . . . . . 6 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 3re 12053 . . . . . 6 3 ∈ ℝ
10 3ne0 12079 . . . . . 6 3 ≠ 0
11 redivcl 11694 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑3) / 3) ∈ ℝ)
129, 10, 11mp3an23 1452 . . . . 5 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 3) ∈ ℝ)
138, 12syl 17 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
14 3z 12353 . . . . . . . . 9 3 ∈ ℤ
15 expgt0 13816 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
1614, 15mp3an2 1448 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
17163adant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑3))
184, 17sylbi 216 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑3))
19 0lt1 11497 . . . . . . . 8 0 < 1
202, 19pm3.2i 471 . . . . . . 7 (1 ∈ ℝ ∧ 0 < 1)
21 3pos 12078 . . . . . . . 8 0 < 3
229, 21pm3.2i 471 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
23 1lt3 12146 . . . . . . . 8 1 < 3
24 ltdiv2 11861 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1)))
2523, 24mpbii 232 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
2620, 22, 25mp3an12 1450 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3)) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
278, 18, 26syl2anc 584 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
288recnd 11003 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
2928div1d 11743 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3))
3027, 29breqtrd 5100 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3))
31 1nn0 12249 . . . . . . 7 1 ∈ ℕ0
3231a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 1 ∈ ℕ0)
33 1le3 12185 . . . . . . . 8 1 ≤ 3
34 1z 12350 . . . . . . . . 9 1 ∈ ℤ
3534eluz1i 12590 . . . . . . . 8 (3 ∈ (ℤ‘1) ↔ (3 ∈ ℤ ∧ 1 ≤ 3))
3614, 33, 35mpbir2an 708 . . . . . . 7 3 ∈ (ℤ‘1)
3736a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 3 ∈ (ℤ‘1))
384simp2bi 1145 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
39 0re 10977 . . . . . . . 8 0 ∈ ℝ
40 ltle 11063 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
4139, 5, 40sylancr 587 . . . . . . 7 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
4238, 41mpd 15 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
434simp3bi 1146 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
445, 32, 37, 42, 43leexp2rd 13972 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1))
455recnd 11003 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
4645exp1d 13859 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴)
4744, 46breqtrd 5100 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴)
4813, 8, 5, 30, 47ltletrd 11135 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴)
4913, 5posdifd 11562 . . 3 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3))))
5048, 49mpbid 231 . 2 (𝐴 ∈ (0(,]1) → 0 < (𝐴 − ((𝐴↑3) / 3)))
51 sin01bnd 15894 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
5251simpld 495 . 2 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))
535, 13resubcld 11403 . . 3 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ)
545resincld 15852 . . 3 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
55 lttr 11051 . . 3 ((0 ∈ ℝ ∧ (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5639, 53, 54, 55mp3an2i 1465 . 2 (𝐴 ∈ (0(,]1) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5750, 52, 56mp2and 696 1 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  3c3 12029  0cn0 12233  cz 12319  cuz 12582  (,]cioc 13080  cexp 13782  sincsin 15773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioc 13084  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779
This theorem is referenced by:  sin02gt0  15901  sincos1sgn  15902  sincos4thpi  25670
  Copyright terms: Public domain W3C validator