MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01gt0 Structured version   Visualization version   GIF version

Theorem sin01gt0 16195
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 11275 . . . . . . . 8 0 ∈ ℝ*
2 1re 11228 . . . . . . . 8 1 ∈ ℝ
3 elioc2 13417 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 692 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1145 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 12512 . . . . . 6 3 ∈ ℕ0
7 reexpcl 14086 . . . . . 6 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 3re 12313 . . . . . 6 3 ∈ ℝ
10 3ne0 12339 . . . . . 6 3 ≠ 0
11 redivcl 11953 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑3) / 3) ∈ ℝ)
129, 10, 11mp3an23 1454 . . . . 5 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 3) ∈ ℝ)
138, 12syl 17 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
14 3z 12618 . . . . . . . . 9 3 ∈ ℤ
15 expgt0 14103 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
1614, 15mp3an2 1450 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
17163adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑3))
184, 17sylbi 217 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑3))
19 0lt1 11752 . . . . . . . 8 0 < 1
202, 19pm3.2i 470 . . . . . . 7 (1 ∈ ℝ ∧ 0 < 1)
21 3pos 12338 . . . . . . . 8 0 < 3
229, 21pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
23 1lt3 12406 . . . . . . . 8 1 < 3
24 ltdiv2 12121 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1)))
2523, 24mpbii 233 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
2620, 22, 25mp3an12 1452 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3)) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
278, 18, 26syl2anc 584 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
288recnd 11256 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
2928div1d 12002 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3))
3027, 29breqtrd 5143 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3))
31 1nn0 12510 . . . . . . 7 1 ∈ ℕ0
3231a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 1 ∈ ℕ0)
33 1le3 12445 . . . . . . . 8 1 ≤ 3
34 1z 12615 . . . . . . . . 9 1 ∈ ℤ
3534eluz1i 12853 . . . . . . . 8 (3 ∈ (ℤ‘1) ↔ (3 ∈ ℤ ∧ 1 ≤ 3))
3614, 33, 35mpbir2an 711 . . . . . . 7 3 ∈ (ℤ‘1)
3736a1i 11 . . . . . 6 (𝐴 ∈ (0(,]1) → 3 ∈ (ℤ‘1))
384simp2bi 1146 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
39 0re 11230 . . . . . . . 8 0 ∈ ℝ
40 ltle 11316 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
4139, 5, 40sylancr 587 . . . . . . 7 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
4238, 41mpd 15 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
434simp3bi 1147 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
445, 32, 37, 42, 43leexp2rd 14263 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1))
455recnd 11256 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
4645exp1d 14149 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴)
4744, 46breqtrd 5143 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴)
4813, 8, 5, 30, 47ltletrd 11388 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴)
4913, 5posdifd 11817 . . 3 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3))))
5048, 49mpbid 232 . 2 (𝐴 ∈ (0(,]1) → 0 < (𝐴 − ((𝐴↑3) / 3)))
51 sin01bnd 16190 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
5251simpld 494 . 2 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))
535, 13resubcld 11658 . . 3 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ)
545resincld 16148 . . 3 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
55 lttr 11304 . . 3 ((0 ∈ ℝ ∧ (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5639, 53, 54, 55mp3an2i 1467 . 2 (𝐴 ∈ (0(,]1) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5750, 52, 56mp2and 699 1 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  wne 2931   class class class wbr 5117  cfv 6528  (class class class)co 7400  cr 11121  0cc0 11122  1c1 11123  *cxr 11261   < clt 11262  cle 11263  cmin 11459   / cdiv 11887  3c3 12289  0cn0 12494  cz 12581  cuz 12845  (,]cioc 13355  cexp 14069  sincsin 16068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-pm 8838  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-ioc 13359  df-ico 13360  df-fz 13515  df-fzo 13662  df-fl 13799  df-seq 14010  df-exp 14070  df-fac 14282  df-hash 14339  df-shft 15075  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-limsup 15476  df-clim 15493  df-rlim 15494  df-sum 15692  df-ef 16072  df-sin 16074
This theorem is referenced by:  sin02gt0  16197  sincos1sgn  16198  sincos4thpi  26460
  Copyright terms: Public domain W3C validator