MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01bnd Structured version   Visualization version   GIF version

Theorem sin01bnd 16218
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11306 . . . . . . . . 9 0 ∈ ℝ*
2 1re 11259 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 13447 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 692 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1144 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 12542 . . . . . . . . 9 3 ∈ ℕ0
7 reexpcl 14116 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 586 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 6nn 12353 . . . . . . . 8 6 ∈ ℕ
10 nndivre 12305 . . . . . . . 8 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑3) / 6) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℝ)
125, 11resubcld 11689 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
1312recnd 11287 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
14 ax-icn 11212 . . . . . . . . 9 i ∈ ℂ
155recnd 11287 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
16 mulcl 11237 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1714, 15, 16sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
18 4nn0 12543 . . . . . . . 8 4 ∈ ℕ0
19 eqid 2735 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
2019eftlcl 16140 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2117, 18, 20sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2221imcld 15231 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2322recnd 11287 . . . . 5 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2419resin4p 16171 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
255, 24syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2613, 23, 25mvrladdd 11674 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2726fveq2d 6911 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) = (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2823abscld 15472 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
2921abscld 15472 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
30 absimle 15345 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3121, 30syl 17 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
32 reexpcl 14116 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
335, 18, 32sylancl 586 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
34 nndivre 12305 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3533, 9, 34sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
3619ef01bndlem 16217 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
376a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 3 ∈ ℕ0)
38 4z 12649 . . . . . . . . 9 4 ∈ ℤ
39 3re 12344 . . . . . . . . . 10 3 ∈ ℝ
40 4re 12348 . . . . . . . . . 10 4 ∈ ℝ
41 3lt4 12438 . . . . . . . . . 10 3 < 4
4239, 40, 41ltleii 11382 . . . . . . . . 9 3 ≤ 4
43 3z 12648 . . . . . . . . . 10 3 ∈ ℤ
4443eluz1i 12884 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
4538, 42, 44mpbir2an 711 . . . . . . . 8 4 ∈ (ℤ‘3)
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘3))
474simp2bi 1145 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
48 0re 11261 . . . . . . . . 9 0 ∈ ℝ
49 ltle 11347 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5048, 5, 49sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5147, 50mpd 15 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
524simp3bi 1146 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
535, 37, 46, 51, 52leexp2rd 14291 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3))
54 6re 12354 . . . . . . . 8 6 ∈ ℝ
5554a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
56 6pos 12374 . . . . . . . 8 0 < 6
5756a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
58 lediv1 12131 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
5933, 8, 55, 57, 58syl112anc 1373 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6053, 59mpbid 232 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))
6129, 35, 11, 36, 60ltletrd 11419 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6))
6228, 29, 11, 31, 61lelttrd 11417 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6))
6327, 62eqbrtrd 5170 . 2 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
645resincld 16176 . . . 4 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
6564, 12, 11absdifltd 15469 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6611recnd 11287 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℂ)
6715, 66, 66subsub4d 11649 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
688recnd 11287 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
69 3cn 12345 . . . . . . . . . . . . 13 3 ∈ ℂ
70 3ne0 12370 . . . . . . . . . . . . 13 3 ≠ 0
7169, 70pm3.2i 470 . . . . . . . . . . . 12 (3 ∈ ℂ ∧ 3 ≠ 0)
72 2cnne0 12474 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
73 divdiv1 11976 . . . . . . . . . . . 12 (((𝐴↑3) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7471, 72, 73mp3an23 1452 . . . . . . . . . . 11 ((𝐴↑3) ∈ ℂ → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7568, 74syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
76 3t2e6 12430 . . . . . . . . . . 11 (3 · 2) = 6
7776oveq2i 7442 . . . . . . . . . 10 ((𝐴↑3) / (3 · 2)) = ((𝐴↑3) / 6)
7875, 77eqtr2di 2792 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
7978, 78oveq12d 7449 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
80 3nn 12343 . . . . . . . . . . 11 3 ∈ ℕ
81 nndivre 12305 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴↑3) / 3) ∈ ℝ)
828, 80, 81sylancl 586 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
8382recnd 11287 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℂ)
84832halvesd 12510 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
8579, 84eqtrd 2775 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
8685oveq2d 7447 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3)))
8767, 86eqtrd 2775 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3)))
8887breq1d 5158 . . . 4 (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)))
8915, 66npcand 11622 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9089breq2d 5160 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴))
9188, 90anbi12d 632 . . 3 (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9265, 91bitrd 279 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9363, 92mpbid 232 1 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  4c4 12321  6c6 12323  0cn0 12524  cz 12611  cuz 12876  (,]cioc 13385  cexp 14099  !cfa 14309  cim 15134  abscabs 15270  Σcsu 15719  sincsin 16096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ioc 13389  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102
This theorem is referenced by:  sinltx  16222  sin01gt0  16223  tangtx  26562  sinccvglem  35657
  Copyright terms: Public domain W3C validator