| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 11287 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 2 | | 1re 11240 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 3 | | elioc2 13431 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
| 4 | 1, 2, 3 | mp2an 692 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
| 5 | 4 | simp1bi 1145 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
| 6 | | 3nn0 12524 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
| 7 | | reexpcl 14101 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℕ0) → (𝐴↑3) ∈ ℝ) |
| 8 | 5, 6, 7 | sylancl 586 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℝ) |
| 9 | | 6nn 12334 |
. . . . . . . 8
⊢ 6 ∈
ℕ |
| 10 | | nndivre 12286 |
. . . . . . . 8
⊢ (((𝐴↑3) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑3) / 6) ∈
ℝ) |
| 11 | 8, 9, 10 | sylancl 586 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈
ℝ) |
| 12 | 5, 11 | resubcld 11670 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈
ℝ) |
| 13 | 12 | recnd 11268 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈
ℂ) |
| 14 | | ax-icn 11193 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 15 | 5 | recnd 11268 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℂ) |
| 16 | | mulcl 11218 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
| 17 | 14, 15, 16 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (i
· 𝐴) ∈
ℂ) |
| 18 | | 4nn0 12525 |
. . . . . . . 8
⊢ 4 ∈
ℕ0 |
| 19 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) |
| 20 | 19 | eftlcl 16130 |
. . . . . . . 8
⊢ (((i
· 𝐴) ∈ ℂ
∧ 4 ∈ ℕ0) → Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 21 | 17, 18, 20 | sylancl 586 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) →
Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 22 | 21 | imcld 15219 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 23 | 22 | recnd 11268 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ) |
| 24 | 19 | resin4p 16161 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 25 | 5, 24 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 26 | 13, 23, 25 | mvrladdd 11655 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((sin‘𝐴) −
(𝐴 − ((𝐴↑3) / 6))) =
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 27 | 26 | fveq2d 6885 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) =
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 28 | 23 | abscld 15460 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ) |
| 29 | 21 | abscld 15460 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 30 | | absimle 15333 |
. . . . 5
⊢
(Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 31 | 21, 30 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 32 | | reexpcl 14101 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 4 ∈
ℕ0) → (𝐴↑4) ∈ ℝ) |
| 33 | 5, 18, 32 | sylancl 586 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈
ℝ) |
| 34 | | nndivre 12286 |
. . . . . 6
⊢ (((𝐴↑4) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑4) / 6) ∈
ℝ) |
| 35 | 33, 9, 34 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈
ℝ) |
| 36 | 19 | ef01bndlem 16207 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6)) |
| 37 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 3 ∈
ℕ0) |
| 38 | | 4z 12631 |
. . . . . . . . 9
⊢ 4 ∈
ℤ |
| 39 | | 3re 12325 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 40 | | 4re 12329 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 41 | | 3lt4 12419 |
. . . . . . . . . 10
⊢ 3 <
4 |
| 42 | 39, 40, 41 | ltleii 11363 |
. . . . . . . . 9
⊢ 3 ≤
4 |
| 43 | | 3z 12630 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
| 44 | 43 | eluz1i 12865 |
. . . . . . . . 9
⊢ (4 ∈
(ℤ≥‘3) ↔ (4 ∈ ℤ ∧ 3 ≤
4)) |
| 45 | 38, 42, 44 | mpbir2an 711 |
. . . . . . . 8
⊢ 4 ∈
(ℤ≥‘3) |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 4 ∈
(ℤ≥‘3)) |
| 47 | 4 | simp2bi 1146 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → 0 <
𝐴) |
| 48 | | 0re 11242 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 49 | | ltle 11328 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 50 | 48, 5, 49 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (0 <
𝐴 → 0 ≤ 𝐴)) |
| 51 | 47, 50 | mpd 15 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 ≤
𝐴) |
| 52 | 4 | simp3bi 1147 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1) |
| 53 | 5, 37, 46, 51, 52 | leexp2rd 14278 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3)) |
| 54 | | 6re 12335 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
| 55 | 54 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 6 ∈
ℝ) |
| 56 | | 6pos 12355 |
. . . . . . . 8
⊢ 0 <
6 |
| 57 | 56 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
6) |
| 58 | | lediv1 12112 |
. . . . . . 7
⊢ (((𝐴↑4) ∈ ℝ ∧
(𝐴↑3) ∈ ℝ
∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))) |
| 59 | 33, 8, 55, 57, 58 | syl112anc 1376 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))) |
| 60 | 53, 59 | mpbid 232 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)) |
| 61 | 29, 35, 11, 36, 60 | ltletrd 11400 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6)) |
| 62 | 28, 29, 11, 31, 61 | lelttrd 11398 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6)) |
| 63 | 27, 62 | eqbrtrd 5146 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6)) |
| 64 | 5 | resincld 16166 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) ∈
ℝ) |
| 65 | 64, 12, 11 | absdifltd 15457 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))))) |
| 66 | 11 | recnd 11268 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈
ℂ) |
| 67 | 15, 66, 66 | subsub4d 11630 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6)))) |
| 68 | 8 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℂ) |
| 69 | | 3cn 12326 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
| 70 | | 3ne0 12351 |
. . . . . . . . . . . . 13
⊢ 3 ≠
0 |
| 71 | 69, 70 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (3 ∈
ℂ ∧ 3 ≠ 0) |
| 72 | | 2cnne0 12455 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 73 | | divdiv1 11957 |
. . . . . . . . . . . 12
⊢ (((𝐴↑3) ∈ ℂ ∧ (3
∈ ℂ ∧ 3 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((𝐴↑3) / 3) / 2) =
((𝐴↑3) / (3 ·
2))) |
| 74 | 71, 72, 73 | mp3an23 1455 |
. . . . . . . . . . 11
⊢ ((𝐴↑3) ∈ ℂ →
(((𝐴↑3) / 3) / 2) =
((𝐴↑3) / (3 ·
2))) |
| 75 | 68, 74 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 ·
2))) |
| 76 | | 3t2e6 12411 |
. . . . . . . . . . 11
⊢ (3
· 2) = 6 |
| 77 | 76 | oveq2i 7421 |
. . . . . . . . . 10
⊢ ((𝐴↑3) / (3 · 2)) =
((𝐴↑3) /
6) |
| 78 | 75, 77 | eqtr2di 2788 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) /
2)) |
| 79 | 78, 78 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) /
2))) |
| 80 | | 3nn 12324 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
| 81 | | nndivre 12286 |
. . . . . . . . . . 11
⊢ (((𝐴↑3) ∈ ℝ ∧ 3
∈ ℕ) → ((𝐴↑3) / 3) ∈
ℝ) |
| 82 | 8, 80, 81 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℝ) |
| 83 | 82 | recnd 11268 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℂ) |
| 84 | 83 | 2halvesd 12492 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3)) |
| 85 | 79, 84 | eqtrd 2771 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3)) |
| 86 | 85 | oveq2d 7426 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3))) |
| 87 | 67, 86 | eqtrd 2771 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3))) |
| 88 | 87 | breq1d 5134 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))) |
| 89 | 15, 66 | npcand 11603 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴) |
| 90 | 89 | breq2d 5136 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴)) |
| 91 | 88, 90 | anbi12d 632 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))) |
| 92 | 65, 91 | bitrd 279 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))) |
| 93 | 63, 92 | mpbid 232 |
1
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) |