MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01bnd Structured version   Visualization version   GIF version

Theorem sin01bnd 15530
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10680 . . . . . . . . 9 0 ∈ ℝ*
2 1re 10633 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 12791 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 690 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1140 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 11907 . . . . . . . . 9 3 ∈ ℕ0
7 reexpcl 13438 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 588 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 6nn 11718 . . . . . . . 8 6 ∈ ℕ
10 nndivre 11670 . . . . . . . 8 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑3) / 6) ∈ ℝ)
118, 9, 10sylancl 588 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℝ)
125, 11resubcld 11060 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
1312recnd 10661 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
14 ax-icn 10588 . . . . . . . . 9 i ∈ ℂ
155recnd 10661 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
16 mulcl 10613 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1714, 15, 16sylancr 589 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
18 4nn0 11908 . . . . . . . 8 4 ∈ ℕ0
19 eqid 2819 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
2019eftlcl 15452 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2117, 18, 20sylancl 588 . . . . . . 7 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2221imcld 14546 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2322recnd 10661 . . . . 5 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2419resin4p 15483 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
255, 24syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2613, 23, 25mvrladdd 11045 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2726fveq2d 6667 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) = (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2823abscld 14788 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
2921abscld 14788 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
30 absimle 14661 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3121, 30syl 17 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
32 reexpcl 13438 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
335, 18, 32sylancl 588 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
34 nndivre 11670 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3533, 9, 34sylancl 588 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
3619ef01bndlem 15529 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
376a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 3 ∈ ℕ0)
38 4z 12008 . . . . . . . . 9 4 ∈ ℤ
39 3re 11709 . . . . . . . . . 10 3 ∈ ℝ
40 4re 11713 . . . . . . . . . 10 4 ∈ ℝ
41 3lt4 11803 . . . . . . . . . 10 3 < 4
4239, 40, 41ltleii 10755 . . . . . . . . 9 3 ≤ 4
43 3z 12007 . . . . . . . . . 10 3 ∈ ℤ
4443eluz1i 12243 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
4538, 42, 44mpbir2an 709 . . . . . . . 8 4 ∈ (ℤ‘3)
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘3))
474simp2bi 1141 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
48 0re 10635 . . . . . . . . 9 0 ∈ ℝ
49 ltle 10721 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5048, 5, 49sylancr 589 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5147, 50mpd 15 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
524simp3bi 1142 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
535, 37, 46, 51, 52leexp2rd 13610 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3))
54 6re 11719 . . . . . . . 8 6 ∈ ℝ
5554a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
56 6pos 11739 . . . . . . . 8 0 < 6
5756a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
58 lediv1 11497 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
5933, 8, 55, 57, 58syl112anc 1369 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6053, 59mpbid 234 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))
6129, 35, 11, 36, 60ltletrd 10792 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6))
6228, 29, 11, 31, 61lelttrd 10790 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6))
6327, 62eqbrtrd 5079 . 2 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
645resincld 15488 . . . 4 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
6564, 12, 11absdifltd 14785 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6611recnd 10661 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℂ)
6715, 66, 66subsub4d 11020 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
688recnd 10661 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
69 3cn 11710 . . . . . . . . . . . . 13 3 ∈ ℂ
70 3ne0 11735 . . . . . . . . . . . . 13 3 ≠ 0
7169, 70pm3.2i 473 . . . . . . . . . . . 12 (3 ∈ ℂ ∧ 3 ≠ 0)
72 2cnne0 11839 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
73 divdiv1 11343 . . . . . . . . . . . 12 (((𝐴↑3) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7471, 72, 73mp3an23 1447 . . . . . . . . . . 11 ((𝐴↑3) ∈ ℂ → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7568, 74syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
76 3t2e6 11795 . . . . . . . . . . 11 (3 · 2) = 6
7776oveq2i 7159 . . . . . . . . . 10 ((𝐴↑3) / (3 · 2)) = ((𝐴↑3) / 6)
7875, 77syl6req 2871 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
7978, 78oveq12d 7166 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
80 3nn 11708 . . . . . . . . . . 11 3 ∈ ℕ
81 nndivre 11670 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴↑3) / 3) ∈ ℝ)
828, 80, 81sylancl 588 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
8382recnd 10661 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℂ)
84832halvesd 11875 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
8579, 84eqtrd 2854 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
8685oveq2d 7164 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3)))
8767, 86eqtrd 2854 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3)))
8887breq1d 5067 . . . 4 (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)))
8915, 66npcand 10993 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9089breq2d 5069 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴))
9188, 90anbi12d 632 . . 3 (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9265, 91bitrd 281 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9363, 92mpbid 234 1 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530  ici 10531   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  3c3 11685  4c4 11686  6c6 11688  0cn0 11889  cz 11973  cuz 12235  (,]cioc 12731  cexp 13421  !cfa 13625  cim 14449  abscabs 14585  Σcsu 15034  sincsin 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioc 12735  df-ico 12736  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415
This theorem is referenced by:  sinltx  15534  sin01gt0  15535  tangtx  25083  sinccvglem  32908
  Copyright terms: Public domain W3C validator