MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01bnd Structured version   Visualization version   GIF version

Theorem sin01bnd 16124
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) β†’ ((𝐴 βˆ’ ((𝐴↑3) / 3)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables π‘˜ 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11257 . . . . . . . . 9 0 ∈ ℝ*
2 1re 11210 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 13383 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) β†’ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≀ 1)))
41, 2, 3mp2an 690 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≀ 1))
54simp1bi 1145 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 𝐴 ∈ ℝ)
6 3nn0 12486 . . . . . . . . 9 3 ∈ β„•0
7 reexpcl 14040 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ β„•0) β†’ (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 586 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ (𝐴↑3) ∈ ℝ)
9 6nn 12297 . . . . . . . 8 6 ∈ β„•
10 nndivre 12249 . . . . . . . 8 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ β„•) β†’ ((𝐴↑3) / 6) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑3) / 6) ∈ ℝ)
125, 11resubcld 11638 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ (𝐴 βˆ’ ((𝐴↑3) / 6)) ∈ ℝ)
1312recnd 11238 . . . . 5 (𝐴 ∈ (0(,]1) β†’ (𝐴 βˆ’ ((𝐴↑3) / 6)) ∈ β„‚)
14 ax-icn 11165 . . . . . . . . 9 i ∈ β„‚
155recnd 11238 . . . . . . . . 9 (𝐴 ∈ (0(,]1) β†’ 𝐴 ∈ β„‚)
16 mulcl 11190 . . . . . . . . 9 ((i ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (i Β· 𝐴) ∈ β„‚)
1714, 15, 16sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ (i Β· 𝐴) ∈ β„‚)
18 4nn0 12487 . . . . . . . 8 4 ∈ β„•0
19 eqid 2732 . . . . . . . . 9 (𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›))) = (𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))
2019eftlcl 16046 . . . . . . . 8 (((i Β· 𝐴) ∈ β„‚ ∧ 4 ∈ β„•0) β†’ Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜) ∈ β„‚)
2117, 18, 20sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜) ∈ β„‚)
2221imcld 15138 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ (β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)) ∈ ℝ)
2322recnd 11238 . . . . 5 (𝐴 ∈ (0(,]1) β†’ (β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)) ∈ β„‚)
2419resin4p 16077 . . . . . 6 (𝐴 ∈ ℝ β†’ (sinβ€˜π΄) = ((𝐴 βˆ’ ((𝐴↑3) / 6)) + (β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))))
255, 24syl 17 . . . . 5 (𝐴 ∈ (0(,]1) β†’ (sinβ€˜π΄) = ((𝐴 βˆ’ ((𝐴↑3) / 6)) + (β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))))
2613, 23, 25mvrladdd 11623 . . . 4 (𝐴 ∈ (0(,]1) β†’ ((sinβ€˜π΄) βˆ’ (𝐴 βˆ’ ((𝐴↑3) / 6))) = (β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)))
2726fveq2d 6892 . . 3 (𝐴 ∈ (0(,]1) β†’ (absβ€˜((sinβ€˜π΄) βˆ’ (𝐴 βˆ’ ((𝐴↑3) / 6)))) = (absβ€˜(β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))))
2823abscld 15379 . . . 4 (𝐴 ∈ (0(,]1) β†’ (absβ€˜(β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))) ∈ ℝ)
2921abscld 15379 . . . 4 (𝐴 ∈ (0(,]1) β†’ (absβ€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)) ∈ ℝ)
30 absimle 15252 . . . . 5 (Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜) ∈ β„‚ β†’ (absβ€˜(β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))) ≀ (absβ€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)))
3121, 30syl 17 . . . 4 (𝐴 ∈ (0(,]1) β†’ (absβ€˜(β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))) ≀ (absβ€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)))
32 reexpcl 14040 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ β„•0) β†’ (𝐴↑4) ∈ ℝ)
335, 18, 32sylancl 586 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ (𝐴↑4) ∈ ℝ)
34 nndivre 12249 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ β„•) β†’ ((𝐴↑4) / 6) ∈ ℝ)
3533, 9, 34sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑4) / 6) ∈ ℝ)
3619ef01bndlem 16123 . . . . 5 (𝐴 ∈ (0(,]1) β†’ (absβ€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)) < ((𝐴↑4) / 6))
376a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 3 ∈ β„•0)
38 4z 12592 . . . . . . . . 9 4 ∈ β„€
39 3re 12288 . . . . . . . . . 10 3 ∈ ℝ
40 4re 12292 . . . . . . . . . 10 4 ∈ ℝ
41 3lt4 12382 . . . . . . . . . 10 3 < 4
4239, 40, 41ltleii 11333 . . . . . . . . 9 3 ≀ 4
43 3z 12591 . . . . . . . . . 10 3 ∈ β„€
4443eluz1i 12826 . . . . . . . . 9 (4 ∈ (β„€β‰₯β€˜3) ↔ (4 ∈ β„€ ∧ 3 ≀ 4))
4538, 42, 44mpbir2an 709 . . . . . . . 8 4 ∈ (β„€β‰₯β€˜3)
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 4 ∈ (β„€β‰₯β€˜3))
474simp2bi 1146 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ 0 < 𝐴)
48 0re 11212 . . . . . . . . 9 0 ∈ ℝ
49 ltle 11298 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) β†’ (0 < 𝐴 β†’ 0 ≀ 𝐴))
5048, 5, 49sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ (0 < 𝐴 β†’ 0 ≀ 𝐴))
5147, 50mpd 15 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 0 ≀ 𝐴)
524simp3bi 1147 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 𝐴 ≀ 1)
535, 37, 46, 51, 52leexp2rd 14214 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ (𝐴↑4) ≀ (𝐴↑3))
54 6re 12298 . . . . . . . 8 6 ∈ ℝ
5554a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 6 ∈ ℝ)
56 6pos 12318 . . . . . . . 8 0 < 6
5756a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ 0 < 6)
58 lediv1 12075 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) β†’ ((𝐴↑4) ≀ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≀ ((𝐴↑3) / 6)))
5933, 8, 55, 57, 58syl112anc 1374 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑4) ≀ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≀ ((𝐴↑3) / 6)))
6053, 59mpbid 231 . . . . 5 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑4) / 6) ≀ ((𝐴↑3) / 6))
6129, 35, 11, 36, 60ltletrd 11370 . . . 4 (𝐴 ∈ (0(,]1) β†’ (absβ€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜)) < ((𝐴↑3) / 6))
6228, 29, 11, 31, 61lelttrd 11368 . . 3 (𝐴 ∈ (0(,]1) β†’ (absβ€˜(β„‘β€˜Ξ£π‘˜ ∈ (β„€β‰₯β€˜4)((𝑛 ∈ β„•0 ↦ (((i Β· 𝐴)↑𝑛) / (!β€˜π‘›)))β€˜π‘˜))) < ((𝐴↑3) / 6))
6327, 62eqbrtrd 5169 . 2 (𝐴 ∈ (0(,]1) β†’ (absβ€˜((sinβ€˜π΄) βˆ’ (𝐴 βˆ’ ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
645resincld 16082 . . . 4 (𝐴 ∈ (0(,]1) β†’ (sinβ€˜π΄) ∈ ℝ)
6564, 12, 11absdifltd 15376 . . 3 (𝐴 ∈ (0(,]1) β†’ ((absβ€˜((sinβ€˜π΄) βˆ’ (𝐴 βˆ’ ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 βˆ’ ((𝐴↑3) / 6)) βˆ’ ((𝐴↑3) / 6)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < ((𝐴 βˆ’ ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6611recnd 11238 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑3) / 6) ∈ β„‚)
6715, 66, 66subsub4d 11598 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ ((𝐴 βˆ’ ((𝐴↑3) / 6)) βˆ’ ((𝐴↑3) / 6)) = (𝐴 βˆ’ (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
688recnd 11238 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) β†’ (𝐴↑3) ∈ β„‚)
69 3cn 12289 . . . . . . . . . . . . 13 3 ∈ β„‚
70 3ne0 12314 . . . . . . . . . . . . 13 3 β‰  0
7169, 70pm3.2i 471 . . . . . . . . . . . 12 (3 ∈ β„‚ ∧ 3 β‰  0)
72 2cnne0 12418 . . . . . . . . . . . 12 (2 ∈ β„‚ ∧ 2 β‰  0)
73 divdiv1 11921 . . . . . . . . . . . 12 (((𝐴↑3) ∈ β„‚ ∧ (3 ∈ β„‚ ∧ 3 β‰  0) ∧ (2 ∈ β„‚ ∧ 2 β‰  0)) β†’ (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 Β· 2)))
7471, 72, 73mp3an23 1453 . . . . . . . . . . 11 ((𝐴↑3) ∈ β„‚ β†’ (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 Β· 2)))
7568, 74syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) β†’ (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 Β· 2)))
76 3t2e6 12374 . . . . . . . . . . 11 (3 Β· 2) = 6
7776oveq2i 7416 . . . . . . . . . 10 ((𝐴↑3) / (3 Β· 2)) = ((𝐴↑3) / 6)
7875, 77eqtr2di 2789 . . . . . . . . 9 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
7978, 78oveq12d 7423 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
80 3nn 12287 . . . . . . . . . . 11 3 ∈ β„•
81 nndivre 12249 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ β„•) β†’ ((𝐴↑3) / 3) ∈ ℝ)
828, 80, 81sylancl 586 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑3) / 3) ∈ ℝ)
8382recnd 11238 . . . . . . . . 9 (𝐴 ∈ (0(,]1) β†’ ((𝐴↑3) / 3) ∈ β„‚)
84832halvesd 12454 . . . . . . . 8 (𝐴 ∈ (0(,]1) β†’ ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
8579, 84eqtrd 2772 . . . . . . 7 (𝐴 ∈ (0(,]1) β†’ (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
8685oveq2d 7421 . . . . . 6 (𝐴 ∈ (0(,]1) β†’ (𝐴 βˆ’ (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 βˆ’ ((𝐴↑3) / 3)))
8767, 86eqtrd 2772 . . . . 5 (𝐴 ∈ (0(,]1) β†’ ((𝐴 βˆ’ ((𝐴↑3) / 6)) βˆ’ ((𝐴↑3) / 6)) = (𝐴 βˆ’ ((𝐴↑3) / 3)))
8887breq1d 5157 . . . 4 (𝐴 ∈ (0(,]1) β†’ (((𝐴 βˆ’ ((𝐴↑3) / 6)) βˆ’ ((𝐴↑3) / 6)) < (sinβ€˜π΄) ↔ (𝐴 βˆ’ ((𝐴↑3) / 3)) < (sinβ€˜π΄)))
8915, 66npcand 11571 . . . . 5 (𝐴 ∈ (0(,]1) β†’ ((𝐴 βˆ’ ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9089breq2d 5159 . . . 4 (𝐴 ∈ (0(,]1) β†’ ((sinβ€˜π΄) < ((𝐴 βˆ’ ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sinβ€˜π΄) < 𝐴))
9188, 90anbi12d 631 . . 3 (𝐴 ∈ (0(,]1) β†’ ((((𝐴 βˆ’ ((𝐴↑3) / 6)) βˆ’ ((𝐴↑3) / 6)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < ((𝐴 βˆ’ ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 βˆ’ ((𝐴↑3) / 3)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < 𝐴)))
9265, 91bitrd 278 . 2 (𝐴 ∈ (0(,]1) β†’ ((absβ€˜((sinβ€˜π΄) βˆ’ (𝐴 βˆ’ ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 βˆ’ ((𝐴↑3) / 3)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < 𝐴)))
9363, 92mpbid 231 1 (𝐴 ∈ (0(,]1) β†’ ((𝐴 βˆ’ ((𝐴↑3) / 3)) < (sinβ€˜π΄) ∧ (sinβ€˜π΄) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107  ici 11108   + caddc 11109   Β· cmul 11111  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440   / cdiv 11867  β„•cn 12208  2c2 12263  3c3 12264  4c4 12265  6c6 12267  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  (,]cioc 13321  β†‘cexp 14023  !cfa 14229  β„‘cim 15041  abscabs 15177  Ξ£csu 15628  sincsin 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ioc 13325  df-ico 13326  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-fac 14230  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009
This theorem is referenced by:  sinltx  16128  sin01gt0  16129  tangtx  26006  sinccvglem  34645
  Copyright terms: Public domain W3C validator