Proof of Theorem jm2.20nn
Step | Hyp | Ref
| Expression |
1 | | simp1 1116 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
(ℤ≥‘2)) |
2 | | nnz 11820 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
3 | 2 | 3ad2ant3 1115 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
4 | | frmy 38907 |
. . . . . . . . . . 11
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
5 | 4 | fovcl 7097 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
6 | 1, 3, 5 | syl2anc 576 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
7 | 6 | zcnd 11904 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
8 | 7 | adantr 473 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℂ) |
9 | 8 | sqvald 13325 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) |
10 | | zsqcl 13312 |
. . . . . . . . 9
⊢ ((𝐴 Yrm 𝑁) ∈ ℤ → ((𝐴 Yrm 𝑁)↑2) ∈
ℤ) |
11 | 6, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) |
12 | 11 | adantr 473 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) |
13 | | frmx 38906 |
. . . . . . . . . . . 12
⊢
Xrm :((ℤ≥‘2) ×
ℤ)⟶ℕ0 |
14 | 13 | fovcl 7097 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
15 | 1, 3, 14 | syl2anc 576 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
16 | 15 | nn0zd 11901 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
17 | 16 | adantr 473 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ∈ ℤ) |
18 | 7 | sqvald 13325 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) |
19 | 18 | adantr 473 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) |
20 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) |
21 | 19, 20 | eqbrtrrd 4954 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀)) |
22 | | nnz 11820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
23 | 22 | 3ad2ant2 1114 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ) |
24 | 4 | fovcl 7097 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
25 | 1, 23, 24 | syl2anc 576 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
26 | | muldvds1 15497 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) →
(((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))) |
27 | 6, 6, 25, 26 | syl3anc 1351 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))) |
28 | 27 | adantr 473 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))) |
29 | 21, 28 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)) |
30 | | simpl1 1171 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝐴 ∈
(ℤ≥‘2)) |
31 | 3 | adantr 473 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℤ) |
32 | 23 | adantr 473 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℤ) |
33 | | jm2.19 38986 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∥ 𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))) |
34 | 30, 31, 32, 33 | syl3anc 1351 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 ∥ 𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))) |
35 | 29, 34 | mpbird 249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∥ 𝑀) |
36 | | simpl2 1172 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℕ) |
37 | | simpl3 1173 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℕ) |
38 | | nndivdvds 15479 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ 𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ)) |
39 | 36, 37, 38 | syl2anc 576 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 ∥ 𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ)) |
40 | 35, 39 | mpbid 224 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℕ) |
41 | | nnm1nn0 11753 |
. . . . . . . . 9
⊢ ((𝑀 / 𝑁) ∈ ℕ → ((𝑀 / 𝑁) − 1) ∈
ℕ0) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) − 1) ∈
ℕ0) |
43 | | zexpcl 13262 |
. . . . . . . 8
⊢ (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0)
→ ((𝐴 Xrm
𝑁)↑((𝑀 / 𝑁) − 1)) ∈
ℤ) |
44 | 17, 42, 43 | syl2anc 576 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈
ℤ) |
45 | 40 | nnzd 11902 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℤ) |
46 | 6 | adantr 473 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℤ) |
47 | 45, 46 | zmulcld 11909 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) |
48 | 25 | adantr 473 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℤ) |
49 | | nncn 11450 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
50 | 49 | 3ad2ant2 1114 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ) |
51 | | nncn 11450 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
52 | 51 | 3ad2ant3 1115 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
53 | | nnne0 11477 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
54 | 53 | 3ad2ant3 1115 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
55 | 50, 52, 54 | divcan2d 11221 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀) |
56 | 55 | oveq2d 6994 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀)) |
57 | 56, 25 | eqeltrd 2866 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ) |
58 | 57 | adantr 473 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ) |
59 | 44, 46 | zmulcld 11909 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ) |
60 | 45, 59 | zmulcld 11909 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) |
61 | 58, 60 | zsubcld 11908 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) |
62 | | 3nn0 11730 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ0 |
63 | 62 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈
ℕ0) |
64 | | zexpcl 13262 |
. . . . . . . . . . . 12
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈
ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) |
65 | 6, 63, 64 | syl2anc 576 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) |
66 | 65 | adantr 473 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) |
67 | | 2nn0 11729 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
68 | 67 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∈
ℕ0) |
69 | | 3z 11831 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℤ |
70 | | 2re 11517 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
71 | | 3re 11523 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℝ |
72 | | 2lt3 11622 |
. . . . . . . . . . . . . . 15
⊢ 2 <
3 |
73 | 70, 71, 72 | ltleii 10565 |
. . . . . . . . . . . . . 14
⊢ 2 ≤
3 |
74 | | 2z 11830 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
75 | 74 | eluz1i 12069 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
(ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 2 ≤
3)) |
76 | 69, 73, 75 | mpbir2an 698 |
. . . . . . . . . . . . 13
⊢ 3 ∈
(ℤ≥‘2) |
77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈
(ℤ≥‘2)) |
78 | | dvdsexp 15540 |
. . . . . . . . . . . 12
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 2 ∈
ℕ0 ∧ 3 ∈ (ℤ≥‘2)) →
((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3)) |
79 | 6, 68, 77, 78 | syl3anc 1351 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3)) |
80 | 79 | adantr 473 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3)) |
81 | | jm2.23 38989 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
82 | 30, 31, 40, 81 | syl3anc 1351 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
83 | | dvdstr 15509 |
. . . . . . . . . . 11
⊢ ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧
((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧
((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) |
84 | 83 | imp 398 |
. . . . . . . . . 10
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ ((𝐴
Yrm 𝑁)↑3)
∈ ℤ ∧ ((𝐴
Yrm (𝑁 ·
(𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
85 | 12, 66, 61, 80, 82, 84 | syl32anc 1358 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
86 | | dvds2sub 15507 |
. . . . . . . . . 10
⊢ ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧
(𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))) |
87 | 86 | imp 398 |
. . . . . . . . 9
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ (𝐴
Yrm 𝑀) ∈
ℤ ∧ ((𝐴
Yrm (𝑁 ·
(𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) |
88 | 12, 48, 61, 20, 85, 87 | syl32anc 1358 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) |
89 | 55 | adantr 473 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀) |
90 | 89 | oveq2d 6994 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀)) |
91 | 90 | oveq1d 6993 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) = ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
92 | 91 | oveq2d 6994 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) |
93 | 25 | zcnd 11904 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℂ) |
94 | 93 | adantr 473 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℂ) |
95 | 60 | zcnd 11904 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ) |
96 | 94, 95 | nncand 10805 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) |
97 | 45 | zcnd 11904 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℂ) |
98 | 44 | zcnd 11904 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈
ℂ) |
99 | 97, 98, 8 | mul12d 10651 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))) |
100 | 96, 99 | eqtrd 2814 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))) |
101 | 92, 100 | eqtrd 2814 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))) |
102 | 88, 101 | breqtrd 4956 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))) |
103 | | gcdcom 15725 |
. . . . . . . . . . 11
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁))) |
104 | 6, 16, 103 | syl2anc 576 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁))) |
105 | | jm2.19lem1 38982 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1) |
106 | 1, 3, 105 | syl2anc 576 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1) |
107 | 104, 106 | eqtrd 2814 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1) |
108 | 107 | adantr 473 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1) |
109 | 67 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 2 ∈
ℕ0) |
110 | | rpexp12i 15925 |
. . . . . . . . 9
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ ∧ (2 ∈
ℕ0 ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0))
→ (((𝐴 Yrm
𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) |
111 | 46, 17, 109, 42, 110 | syl112anc 1354 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) |
112 | 108, 111 | mpd 15 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) |
113 | | coprmdvds 15856 |
. . . . . . . 8
⊢ ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧
((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))) |
114 | 113 | imp 398 |
. . . . . . 7
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ ((𝐴
Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) |
115 | 12, 44, 47, 102, 112, 114 | syl32anc 1358 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) |
116 | 9, 115 | eqbrtrrd 4954 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) |
117 | | rmy0 38922 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
118 | 117 | 3ad2ant1 1113 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0) |
119 | | nngt0 11474 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
120 | 119 | 3ad2ant3 1115 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
121 | | 0zd 11808 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈
ℤ) |
122 | | ltrmy 38945 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))) |
123 | 1, 121, 3, 122 | syl3anc 1351 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))) |
124 | 120, 123 | mpbid 224 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)) |
125 | 118, 124 | eqbrtrrd 4954 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁)) |
126 | | elnnz 11806 |
. . . . . . . . 9
⊢ ((𝐴 Yrm 𝑁) ∈ ℕ ↔ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ 0 <
(𝐴 Yrm 𝑁))) |
127 | 6, 125, 126 | sylanbrc 575 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ) |
128 | | nnne0 11477 |
. . . . . . . 8
⊢ ((𝐴 Yrm 𝑁) ∈ ℕ → (𝐴 Yrm 𝑁) ≠ 0) |
129 | 127, 128 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ≠ 0) |
130 | 129 | adantr 473 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ≠ 0) |
131 | | dvdsmulcr 15502 |
. . . . . 6
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ≠ 0)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))) |
132 | 46, 45, 46, 130, 131 | syl112anc 1354 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))) |
133 | 116, 132 | mpbid 224 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)) |
134 | 54 | adantr 473 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ≠ 0) |
135 | | dvdscmulr 15501 |
. . . . 5
⊢ (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))) |
136 | 46, 45, 31, 134, 135 | syl112anc 1354 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))) |
137 | 133, 136 | mpbird 249 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁))) |
138 | 137, 89 | breqtrd 4956 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) |
139 | 11 | adantr 473 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) |
140 | 3, 6 | zmulcld 11909 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) |
141 | 4 | fovcl 7097 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ) |
142 | 1, 140, 141 | syl2anc 576 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ) |
143 | 142 | adantr 473 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ) |
144 | 25 | adantr 473 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ) |
145 | | nnm1nn0 11753 |
. . . . . . . . 9
⊢ ((𝐴 Yrm 𝑁) ∈ ℕ → ((𝐴 Yrm 𝑁) − 1) ∈
ℕ0) |
146 | 127, 145 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − 1) ∈
ℕ0) |
147 | | zexpcl 13262 |
. . . . . . . 8
⊢ (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) − 1) ∈
ℕ0) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈
ℤ) |
148 | 16, 146, 147 | syl2anc 576 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈
ℤ) |
149 | | dvdsmul2 15495 |
. . . . . . 7
⊢ ((((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) →
((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2))) |
150 | 148, 11, 149 | syl2anc 576 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2))) |
151 | 18 | oveq2d 6994 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))) |
152 | 148 | zcnd 11904 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈
ℂ) |
153 | 152, 7, 7 | mul12d 10651 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) |
154 | 151, 153 | eqtrd 2814 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) |
155 | 150, 154 | breqtrd 4956 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) |
156 | 148, 6 | zmulcld 11909 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ) |
157 | 6, 156 | zmulcld 11909 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) |
158 | 142, 157 | zsubcld 11908 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) |
159 | | jm2.23 38989 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
160 | 1, 3, 127, 159 | syl3anc 1351 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
161 | | dvdstr 15509 |
. . . . . . . 8
⊢ ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧
((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧
((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) |
162 | 161 | imp 398 |
. . . . . . 7
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ ((𝐴
Yrm 𝑁)↑3)
∈ ℤ ∧ ((𝐴
Yrm (𝑁 ·
(𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
163 | 11, 65, 158, 79, 160, 162 | syl32anc 1358 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
164 | | dvdssub2 15514 |
. . . . . 6
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ (𝐴
Yrm (𝑁 ·
(𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
165 | 11, 142, 157, 163, 164 | syl31anc 1353 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) |
166 | 155, 165 | mpbird 249 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁)))) |
167 | 166 | adantr 473 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁)))) |
168 | | simpr 477 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) |
169 | | simpl1 1171 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝐴 ∈
(ℤ≥‘2)) |
170 | 140 | adantr 473 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) |
171 | 23 | adantr 473 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝑀 ∈ ℤ) |
172 | | jm2.19 38986 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))) |
173 | 169, 170,
171, 172 | syl3anc 1351 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))) |
174 | 168, 173 | mpbid 224 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)) |
175 | | dvdstr 15509 |
. . . 4
⊢ ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧
(𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))) |
176 | 175 | imp 398 |
. . 3
⊢
(((((𝐴
Yrm 𝑁)↑2)
∈ ℤ ∧ (𝐴
Yrm (𝑁 ·
(𝐴 Yrm 𝑁))) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) |
177 | 139, 143,
144, 167, 174, 176 | syl32anc 1358 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) |
178 | 138, 177 | impbida 788 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)) |