Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Visualization version   GIF version

Theorem jm2.20nn 42655
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
2 nnz 12631 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
323ad2ant3 1132 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 frmy 42572 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 7554 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
61, 3, 5syl2anc 582 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
76zcnd 12719 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
87adantr 479 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℂ)
98sqvald 14162 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
10 zsqcl 14148 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℤ → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
116, 10syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1211adantr 479 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
13 frmx 42571 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 7554 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
151, 3, 14syl2anc 582 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0zd 12636 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ)
1716adantr 479 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ∈ ℤ)
187sqvald 14162 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
1918adantr 479 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
20 simpr 483 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
2119, 20eqbrtrrd 5177 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀))
22 nnz 12631 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
23223ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
244fovcl 7554 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
251, 23, 24syl2anc 582 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℤ)
26 muldvds1 16283 . . . . . . . . . . . . . 14 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
276, 6, 25, 26syl3anc 1368 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2827adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2921, 28mpd 15 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))
30 simpl1 1188 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝐴 ∈ (ℤ‘2))
313adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℤ)
3223adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℤ)
33 jm2.19 42651 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3430, 31, 32, 33syl3anc 1368 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3529, 34mpbird 256 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁𝑀)
36 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℕ)
37 simpl3 1190 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℕ)
38 nndivdvds 16265 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
3936, 37, 38syl2anc 582 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4035, 39mpbid 231 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℕ)
41 nnm1nn0 12565 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℕ → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
43 zexpcl 14096 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4417, 42, 43syl2anc 582 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4540nnzd 12637 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℤ)
466adantr 479 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4745, 46zmulcld 12724 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ)
4825adantr 479 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℤ)
49 nncn 12272 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
50493ad2ant2 1131 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
51 nncn 12272 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
52513ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
53 nnne0 12298 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54533ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
5550, 52, 54divcan2d 12043 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5655oveq2d 7440 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
5756, 25eqeltrd 2826 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5857adantr 479 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5944, 46zmulcld 12724 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
6045, 59zmulcld 12724 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
6158, 60zsubcld 12723 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
62 3nn0 12542 . . . . . . . . . . . . 13 3 ∈ ℕ0
6362a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℕ0)
64 zexpcl 14096 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
656, 63, 64syl2anc 582 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
6665adantr 479 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
67 2nn0 12541 . . . . . . . . . . . . 13 2 ∈ ℕ0
6867a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℕ0)
69 3z 12647 . . . . . . . . . . . . . 14 3 ∈ ℤ
70 2re 12338 . . . . . . . . . . . . . . 15 2 ∈ ℝ
71 3re 12344 . . . . . . . . . . . . . . 15 3 ∈ ℝ
72 2lt3 12436 . . . . . . . . . . . . . . 15 2 < 3
7370, 71, 72ltleii 11387 . . . . . . . . . . . . . 14 2 ≤ 3
74 2z 12646 . . . . . . . . . . . . . . 15 2 ∈ ℤ
7574eluz1i 12882 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
7669, 73, 75mpbir2an 709 . . . . . . . . . . . . 13 3 ∈ (ℤ‘2)
7776a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ (ℤ‘2))
78 dvdsexp 16330 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 2 ∈ ℕ0 ∧ 3 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
796, 68, 77, 78syl3anc 1368 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
8079adantr 479 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
81 jm2.23 42654 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8230, 31, 40, 81syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8312, 66, 61, 80, 82dvdstrd 16297 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
84 dvds2sub 16293 . . . . . . . . . 10 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))))
8584imp 405 . . . . . . . . 9 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8612, 48, 61, 20, 83, 85syl32anc 1375 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8755adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
8887oveq2d 7440 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
8988oveq1d 7439 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) = ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
9089oveq2d 7440 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
9125zcnd 12719 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℂ)
9291adantr 479 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℂ)
9360zcnd 12719 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
9492, 93nncand 11626 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
9545zcnd 12719 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℂ)
9644zcnd 12719 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℂ)
9795, 96, 8mul12d 11473 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9894, 97eqtrd 2766 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9990, 98eqtrd 2766 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10086, 99breqtrd 5179 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
1016, 16gcdcomd 16514 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)))
102 jm2.19lem1 42647 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
1031, 3, 102syl2anc 582 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
104101, 103eqtrd 2766 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
105104adantr 479 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
10667a1i 11 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 2 ∈ ℕ0)
107 rpexp12i 16726 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ ∧ (2 ∈ ℕ0 ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
10846, 17, 106, 42, 107syl112anc 1371 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
109105, 108mpd 15 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)
110 coprmdvds 16654 . . . . . . . 8 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
111110imp 405 . . . . . . 7 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
11212, 44, 47, 100, 109, 111syl32anc 1375 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
1139, 112eqbrtrrd 5177 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
114 rmy0 42587 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1151143ad2ant1 1130 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
116 nngt0 12295 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < 𝑁)
1171163ad2ant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
118 0zd 12622 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
119 ltrmy 42610 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
1201, 118, 3, 119syl3anc 1368 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
121117, 120mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
122115, 121eqbrtrrd 5177 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
123 elnnz 12620 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ ↔ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ 0 < (𝐴 Yrm 𝑁)))
1246, 122, 123sylanbrc 581 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ)
125 nnne0 12298 . . . . . . . 8 ((𝐴 Yrm 𝑁) ∈ ℕ → (𝐴 Yrm 𝑁) ≠ 0)
126124, 125syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ≠ 0)
127126adantr 479 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ≠ 0)
128 dvdsmulcr 16288 . . . . . 6 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ≠ 0)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
12946, 45, 46, 127, 128syl112anc 1371 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
130113, 129mpbid 231 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))
13154adantr 479 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ≠ 0)
132 dvdscmulr 16287 . . . . 5 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
13346, 45, 31, 131, 132syl112anc 1371 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
134130, 133mpbird 256 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)))
135134, 87breqtrd 5179 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
13611adantr 479 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1373, 6zmulcld 12724 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
1384fovcl 7554 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
1391, 137, 138syl2anc 582 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
140139adantr 479 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
14125adantr 479 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
142 nnm1nn0 12565 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
143124, 142syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
144 zexpcl 14096 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
14516, 143, 144syl2anc 582 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
146 dvdsmul2 16281 . . . . . . 7 ((((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
147145, 11, 146syl2anc 582 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
14818oveq2d 7440 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))))
149145zcnd 12719 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℂ)
150149, 7, 7mul12d 11473 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
151148, 150eqtrd 2766 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
152147, 151breqtrd 5179 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
153145, 6zmulcld 12724 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
1546, 153zmulcld 12724 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
155139, 154zsubcld 12723 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
156 jm2.23 42654 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
1571, 3, 124, 156syl3anc 1368 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
15811, 65, 155, 79, 157dvdstrd 16297 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
159 dvdssub2 16303 . . . . . 6 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
16011, 139, 154, 158, 159syl31anc 1370 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
161152, 160mpbird 256 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
162161adantr 479 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
163 simpr 483 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
164 simpl1 1188 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
165137adantr 479 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
16623adantr 479 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝑀 ∈ ℤ)
167 jm2.19 42651 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
168164, 165, 166, 167syl3anc 1368 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
169163, 168mpbid 231 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))
170136, 140, 141, 162, 169dvdstrd 16297 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
171135, 170impbida 799 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  3c3 12320  0cn0 12524  cz 12610  cuz 12874  cexp 14081  cdvds 16256   gcd cgcd 16494   Xrm crmx 42557   Yrm crmy 42558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-dvds 16257  df-gcd 16495  df-prm 16673  df-numer 16737  df-denom 16738  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-squarenn 42498  df-pell1qr 42499  df-pell14qr 42500  df-pell1234qr 42501  df-pellfund 42502  df-rmx 42559  df-rmy 42560
This theorem is referenced by:  jm2.27a  42663  jm2.27c  42665
  Copyright terms: Public domain W3C validator