Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Visualization version   GIF version

Theorem jm2.20nn 40296
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 1134 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
2 nnz 12028 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
323ad2ant3 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 frmy 40213 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 7267 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
61, 3, 5syl2anc 588 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
76zcnd 12112 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
87adantr 485 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℂ)
98sqvald 13542 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
10 zsqcl 13529 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℤ → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
116, 10syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1211adantr 485 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
13 frmx 40212 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 7267 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
151, 3, 14syl2anc 588 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0zd 12109 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ)
1716adantr 485 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ∈ ℤ)
187sqvald 13542 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
1918adantr 485 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
20 simpr 489 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
2119, 20eqbrtrrd 5049 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀))
22 nnz 12028 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
23223ad2ant2 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
244fovcl 7267 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
251, 23, 24syl2anc 588 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℤ)
26 muldvds1 15667 . . . . . . . . . . . . . 14 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
276, 6, 25, 26syl3anc 1369 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2827adantr 485 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2921, 28mpd 15 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))
30 simpl1 1189 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝐴 ∈ (ℤ‘2))
313adantr 485 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℤ)
3223adantr 485 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℤ)
33 jm2.19 40292 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3430, 31, 32, 33syl3anc 1369 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3529, 34mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁𝑀)
36 simpl2 1190 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℕ)
37 simpl3 1191 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℕ)
38 nndivdvds 15649 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
3936, 37, 38syl2anc 588 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4035, 39mpbid 235 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℕ)
41 nnm1nn0 11960 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℕ → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
43 zexpcl 13479 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4417, 42, 43syl2anc 588 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4540nnzd 12110 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℤ)
466adantr 485 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4745, 46zmulcld 12117 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ)
4825adantr 485 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℤ)
49 nncn 11667 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
50493ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
51 nncn 11667 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
52513ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
53 nnne0 11693 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54533ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
5550, 52, 54divcan2d 11441 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5655oveq2d 7159 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
5756, 25eqeltrd 2851 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5857adantr 485 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5944, 46zmulcld 12117 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
6045, 59zmulcld 12117 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
6158, 60zsubcld 12116 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
62 3nn0 11937 . . . . . . . . . . . . 13 3 ∈ ℕ0
6362a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℕ0)
64 zexpcl 13479 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
656, 63, 64syl2anc 588 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
6665adantr 485 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
67 2nn0 11936 . . . . . . . . . . . . 13 2 ∈ ℕ0
6867a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℕ0)
69 3z 12039 . . . . . . . . . . . . . 14 3 ∈ ℤ
70 2re 11733 . . . . . . . . . . . . . . 15 2 ∈ ℝ
71 3re 11739 . . . . . . . . . . . . . . 15 3 ∈ ℝ
72 2lt3 11831 . . . . . . . . . . . . . . 15 2 < 3
7370, 71, 72ltleii 10786 . . . . . . . . . . . . . 14 2 ≤ 3
74 2z 12038 . . . . . . . . . . . . . . 15 2 ∈ ℤ
7574eluz1i 12275 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
7669, 73, 75mpbir2an 711 . . . . . . . . . . . . 13 3 ∈ (ℤ‘2)
7776a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ (ℤ‘2))
78 dvdsexp 15714 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 2 ∈ ℕ0 ∧ 3 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
796, 68, 77, 78syl3anc 1369 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
8079adantr 485 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
81 jm2.23 40295 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8230, 31, 40, 81syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8312, 66, 61, 80, 82dvdstrd 15681 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
84 dvds2sub 15677 . . . . . . . . . 10 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))))
8584imp 411 . . . . . . . . 9 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8612, 48, 61, 20, 83, 85syl32anc 1376 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8755adantr 485 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
8887oveq2d 7159 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
8988oveq1d 7158 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) = ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
9089oveq2d 7159 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
9125zcnd 12112 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℂ)
9291adantr 485 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℂ)
9360zcnd 12112 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
9492, 93nncand 11025 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
9545zcnd 12112 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℂ)
9644zcnd 12112 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℂ)
9795, 96, 8mul12d 10872 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9894, 97eqtrd 2794 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9990, 98eqtrd 2794 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10086, 99breqtrd 5051 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
1016, 16gcdcomd 15898 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)))
102 jm2.19lem1 40288 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
1031, 3, 102syl2anc 588 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
104101, 103eqtrd 2794 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
105104adantr 485 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
10667a1i 11 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 2 ∈ ℕ0)
107 rpexp12i 16105 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ ∧ (2 ∈ ℕ0 ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
10846, 17, 106, 42, 107syl112anc 1372 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
109105, 108mpd 15 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)
110 coprmdvds 16034 . . . . . . . 8 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
111110imp 411 . . . . . . 7 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
11212, 44, 47, 100, 109, 111syl32anc 1376 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
1139, 112eqbrtrrd 5049 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
114 rmy0 40228 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1151143ad2ant1 1131 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
116 nngt0 11690 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < 𝑁)
1171163ad2ant3 1133 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
118 0zd 12017 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
119 ltrmy 40251 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
1201, 118, 3, 119syl3anc 1369 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
121117, 120mpbid 235 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
122115, 121eqbrtrrd 5049 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
123 elnnz 12015 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ ↔ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ 0 < (𝐴 Yrm 𝑁)))
1246, 122, 123sylanbrc 587 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ)
125 nnne0 11693 . . . . . . . 8 ((𝐴 Yrm 𝑁) ∈ ℕ → (𝐴 Yrm 𝑁) ≠ 0)
126124, 125syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ≠ 0)
127126adantr 485 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ≠ 0)
128 dvdsmulcr 15672 . . . . . 6 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ≠ 0)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
12946, 45, 46, 127, 128syl112anc 1372 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
130113, 129mpbid 235 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))
13154adantr 485 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ≠ 0)
132 dvdscmulr 15671 . . . . 5 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
13346, 45, 31, 131, 132syl112anc 1372 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
134130, 133mpbird 260 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)))
135134, 87breqtrd 5051 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
13611adantr 485 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1373, 6zmulcld 12117 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
1384fovcl 7267 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
1391, 137, 138syl2anc 588 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
140139adantr 485 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
14125adantr 485 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
142 nnm1nn0 11960 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
143124, 142syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
144 zexpcl 13479 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
14516, 143, 144syl2anc 588 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
146 dvdsmul2 15665 . . . . . . 7 ((((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
147145, 11, 146syl2anc 588 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
14818oveq2d 7159 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))))
149145zcnd 12112 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℂ)
150149, 7, 7mul12d 10872 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
151148, 150eqtrd 2794 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
152147, 151breqtrd 5051 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
153145, 6zmulcld 12117 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
1546, 153zmulcld 12117 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
155139, 154zsubcld 12116 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
156 jm2.23 40295 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
1571, 3, 124, 156syl3anc 1369 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
15811, 65, 155, 79, 157dvdstrd 15681 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
159 dvdssub2 15687 . . . . . 6 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
16011, 139, 154, 158, 159syl31anc 1371 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
161152, 160mpbird 260 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
162161adantr 485 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
163 simpr 489 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
164 simpl1 1189 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
165137adantr 485 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
16623adantr 485 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝑀 ∈ ℤ)
167 jm2.19 40292 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
168164, 165, 166, 167syl3anc 1369 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
169163, 168mpbid 235 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))
170136, 140, 141, 162, 169dvdstrd 15681 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
171135, 170impbida 801 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2949   class class class wbr 5025  cfv 6328  (class class class)co 7143  cc 10558  0cc0 10560  1c1 10561   · cmul 10565   < clt 10698  cle 10699  cmin 10893   / cdiv 11320  cn 11659  2c2 11714  3c3 11715  0cn0 11919  cz 12005  cuz 12267  cexp 13464  cdvds 15640   gcd cgcd 15878   Xrm crmx 40199   Yrm crmy 40200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638  ax-addf 10639  ax-mulf 10640
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-fi 8893  df-sup 8924  df-inf 8925  df-oi 8992  df-card 9386  df-acn 9389  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-xnn0 11992  df-z 12006  df-dec 12123  df-uz 12268  df-q 12374  df-rp 12416  df-xneg 12533  df-xadd 12534  df-xmul 12535  df-ioo 12768  df-ioc 12769  df-ico 12770  df-icc 12771  df-fz 12925  df-fzo 13068  df-fl 13196  df-mod 13272  df-seq 13404  df-exp 13465  df-fac 13669  df-bc 13698  df-hash 13726  df-shft 14459  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-limsup 14861  df-clim 14878  df-rlim 14879  df-sum 15076  df-ef 15454  df-sin 15456  df-cos 15457  df-pi 15459  df-dvds 15641  df-gcd 15879  df-prm 16053  df-numer 16115  df-denom 16116  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-starv 16623  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-ds 16630  df-unif 16631  df-hom 16632  df-cco 16633  df-rest 16739  df-topn 16740  df-0g 16758  df-gsum 16759  df-topgen 16760  df-pt 16761  df-prds 16764  df-xrs 16818  df-qtop 16823  df-imas 16824  df-xps 16826  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-mulg 18277  df-cntz 18499  df-cmn 18960  df-psmet 20143  df-xmet 20144  df-met 20145  df-bl 20146  df-mopn 20147  df-fbas 20148  df-fg 20149  df-cnfld 20152  df-top 21579  df-topon 21596  df-topsp 21618  df-bases 21631  df-cld 21704  df-ntr 21705  df-cls 21706  df-nei 21783  df-lp 21821  df-perf 21822  df-cn 21912  df-cnp 21913  df-haus 22000  df-tx 22247  df-hmeo 22440  df-fil 22531  df-fm 22623  df-flim 22624  df-flf 22625  df-xms 23007  df-ms 23008  df-tms 23009  df-cncf 23564  df-limc 24550  df-dv 24551  df-log 25232  df-squarenn 40140  df-pell1qr 40141  df-pell14qr 40142  df-pell1234qr 40143  df-pellfund 40144  df-rmx 40201  df-rmy 40202
This theorem is referenced by:  jm2.27a  40304  jm2.27c  40306
  Copyright terms: Public domain W3C validator