Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Visualization version   GIF version

Theorem jm2.20nn 40522
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 1138 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
2 nnz 12199 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
323ad2ant3 1137 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 frmy 40439 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 7338 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
61, 3, 5syl2anc 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
76zcnd 12283 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
87adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℂ)
98sqvald 13713 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
10 zsqcl 13700 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℤ → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
116, 10syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1211adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
13 frmx 40438 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 7338 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
151, 3, 14syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0zd 12280 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ)
1716adantr 484 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ∈ ℤ)
187sqvald 13713 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
1918adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
20 simpr 488 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
2119, 20eqbrtrrd 5077 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀))
22 nnz 12199 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
23223ad2ant2 1136 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
244fovcl 7338 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
251, 23, 24syl2anc 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℤ)
26 muldvds1 15842 . . . . . . . . . . . . . 14 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
276, 6, 25, 26syl3anc 1373 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2827adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2921, 28mpd 15 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))
30 simpl1 1193 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝐴 ∈ (ℤ‘2))
313adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℤ)
3223adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℤ)
33 jm2.19 40518 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3430, 31, 32, 33syl3anc 1373 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3529, 34mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁𝑀)
36 simpl2 1194 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℕ)
37 simpl3 1195 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℕ)
38 nndivdvds 15824 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
3936, 37, 38syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4035, 39mpbid 235 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℕ)
41 nnm1nn0 12131 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℕ → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
43 zexpcl 13650 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4417, 42, 43syl2anc 587 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4540nnzd 12281 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℤ)
466adantr 484 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4745, 46zmulcld 12288 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ)
4825adantr 484 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℤ)
49 nncn 11838 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
50493ad2ant2 1136 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
51 nncn 11838 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
52513ad2ant3 1137 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
53 nnne0 11864 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54533ad2ant3 1137 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
5550, 52, 54divcan2d 11610 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5655oveq2d 7229 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
5756, 25eqeltrd 2838 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5857adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5944, 46zmulcld 12288 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
6045, 59zmulcld 12288 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
6158, 60zsubcld 12287 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
62 3nn0 12108 . . . . . . . . . . . . 13 3 ∈ ℕ0
6362a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℕ0)
64 zexpcl 13650 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
656, 63, 64syl2anc 587 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
6665adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
67 2nn0 12107 . . . . . . . . . . . . 13 2 ∈ ℕ0
6867a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℕ0)
69 3z 12210 . . . . . . . . . . . . . 14 3 ∈ ℤ
70 2re 11904 . . . . . . . . . . . . . . 15 2 ∈ ℝ
71 3re 11910 . . . . . . . . . . . . . . 15 3 ∈ ℝ
72 2lt3 12002 . . . . . . . . . . . . . . 15 2 < 3
7370, 71, 72ltleii 10955 . . . . . . . . . . . . . 14 2 ≤ 3
74 2z 12209 . . . . . . . . . . . . . . 15 2 ∈ ℤ
7574eluz1i 12446 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
7669, 73, 75mpbir2an 711 . . . . . . . . . . . . 13 3 ∈ (ℤ‘2)
7776a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ (ℤ‘2))
78 dvdsexp 15889 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 2 ∈ ℕ0 ∧ 3 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
796, 68, 77, 78syl3anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
8079adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
81 jm2.23 40521 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8230, 31, 40, 81syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8312, 66, 61, 80, 82dvdstrd 15856 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
84 dvds2sub 15852 . . . . . . . . . 10 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))))
8584imp 410 . . . . . . . . 9 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8612, 48, 61, 20, 83, 85syl32anc 1380 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8755adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
8887oveq2d 7229 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
8988oveq1d 7228 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) = ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
9089oveq2d 7229 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
9125zcnd 12283 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℂ)
9291adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℂ)
9360zcnd 12283 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
9492, 93nncand 11194 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
9545zcnd 12283 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℂ)
9644zcnd 12283 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℂ)
9795, 96, 8mul12d 11041 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9894, 97eqtrd 2777 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
9990, 98eqtrd 2777 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10086, 99breqtrd 5079 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
1016, 16gcdcomd 16073 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)))
102 jm2.19lem1 40514 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
1031, 3, 102syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
104101, 103eqtrd 2777 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
105104adantr 484 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
10667a1i 11 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 2 ∈ ℕ0)
107 rpexp12i 16281 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ ∧ (2 ∈ ℕ0 ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
10846, 17, 106, 42, 107syl112anc 1376 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
109105, 108mpd 15 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)
110 coprmdvds 16210 . . . . . . . 8 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
111110imp 410 . . . . . . 7 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
11212, 44, 47, 100, 109, 111syl32anc 1380 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
1139, 112eqbrtrrd 5077 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
114 rmy0 40454 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1151143ad2ant1 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
116 nngt0 11861 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < 𝑁)
1171163ad2ant3 1137 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
118 0zd 12188 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
119 ltrmy 40477 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
1201, 118, 3, 119syl3anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
121117, 120mpbid 235 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
122115, 121eqbrtrrd 5077 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
123 elnnz 12186 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ ↔ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ 0 < (𝐴 Yrm 𝑁)))
1246, 122, 123sylanbrc 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ)
125 nnne0 11864 . . . . . . . 8 ((𝐴 Yrm 𝑁) ∈ ℕ → (𝐴 Yrm 𝑁) ≠ 0)
126124, 125syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ≠ 0)
127126adantr 484 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ≠ 0)
128 dvdsmulcr 15847 . . . . . 6 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ≠ 0)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
12946, 45, 46, 127, 128syl112anc 1376 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
130113, 129mpbid 235 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))
13154adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ≠ 0)
132 dvdscmulr 15846 . . . . 5 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
13346, 45, 31, 131, 132syl112anc 1376 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
134130, 133mpbird 260 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)))
135134, 87breqtrd 5079 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
13611adantr 484 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1373, 6zmulcld 12288 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
1384fovcl 7338 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
1391, 137, 138syl2anc 587 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
140139adantr 484 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
14125adantr 484 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
142 nnm1nn0 12131 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
143124, 142syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
144 zexpcl 13650 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
14516, 143, 144syl2anc 587 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
146 dvdsmul2 15840 . . . . . . 7 ((((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
147145, 11, 146syl2anc 587 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
14818oveq2d 7229 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))))
149145zcnd 12283 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℂ)
150149, 7, 7mul12d 11041 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
151148, 150eqtrd 2777 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
152147, 151breqtrd 5079 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
153145, 6zmulcld 12288 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
1546, 153zmulcld 12288 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
155139, 154zsubcld 12287 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
156 jm2.23 40521 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
1571, 3, 124, 156syl3anc 1373 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
15811, 65, 155, 79, 157dvdstrd 15856 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
159 dvdssub2 15862 . . . . . 6 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
16011, 139, 154, 158, 159syl31anc 1375 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
161152, 160mpbird 260 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
162161adantr 484 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
163 simpr 488 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
164 simpl1 1193 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
165137adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
16623adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝑀 ∈ ℤ)
167 jm2.19 40518 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
168164, 165, 166, 167syl3anc 1373 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
169163, 168mpbid 235 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))
170136, 140, 141, 162, 169dvdstrd 15856 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
171135, 170impbida 801 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  3c3 11886  0cn0 12090  cz 12176  cuz 12438  cexp 13635  cdvds 15815   gcd cgcd 16053   Xrm crmx 40425   Yrm crmy 40426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-numer 16291  df-denom 16292  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-squarenn 40366  df-pell1qr 40367  df-pell14qr 40368  df-pell1234qr 40369  df-pellfund 40370  df-rmx 40427  df-rmy 40428
This theorem is referenced by:  jm2.27a  40530  jm2.27c  40532
  Copyright terms: Public domain W3C validator