![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ring | Structured version Visualization version GIF version |
Description: If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
0ring | ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 0ring.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 20159 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
4 | 1 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
5 | hashen1 14337 | . . . . 5 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o) |
7 | en1eqsn 9280 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) | |
8 | 7 | ex 412 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝐵 ≈ 1o → 𝐵 = { 0 })) |
9 | 6, 8 | biimtrid 241 | . . 3 ⊢ ( 0 ∈ 𝐵 → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
10 | 3, 9 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
11 | 10 | imp 406 | 1 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 class class class wbr 5148 ‘cfv 6543 1oc1o 8465 ≈ cen 8942 1c1 11117 ♯chash 14297 Basecbs 17151 0gc0g 17392 Ringcrg 20131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-hash 14298 df-0g 17394 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-ring 20133 |
This theorem is referenced by: 0ringdif 20420 0ring01eq 20422 01eq0ringOLD 20424 0ringsubrg 32664 0ringidl 32828 0ringprmidl 32857 prmidl0 32858 lindsrng01 47249 |
Copyright terms: Public domain | W3C validator |