| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ring | Structured version Visualization version GIF version | ||
| Description: If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| 0ring | ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 0ring.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | ring0cl 20186 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 4 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | hashen1 14277 | . . . . 5 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o) |
| 7 | en1eqsn 9159 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) | |
| 8 | 7 | ex 412 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝐵 ≈ 1o → 𝐵 = { 0 })) |
| 9 | 6, 8 | biimtrid 242 | . . 3 ⊢ ( 0 ∈ 𝐵 → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
| 10 | 3, 9 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 class class class wbr 5091 ‘cfv 6481 1oc1o 8378 ≈ cen 8866 1c1 11007 ♯chash 14237 Basecbs 17120 0gc0g 17343 Ringcrg 20152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ring 20154 |
| This theorem is referenced by: 0ringdif 20443 0ring01eq 20445 01eq0ringOLD 20447 0ringsubrg 33216 0ringcring 33217 0ringidl 33384 0ringprmidl 33412 prmidl0 33413 lindsrng01 48506 |
| Copyright terms: Public domain | W3C validator |