MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ring Structured version   Visualization version   GIF version

Theorem 0ring 20552
Description: If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
Assertion
Ref Expression
0ring ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })

Proof of Theorem 0ring
StepHypRef Expression
1 0ring.b . . . 4 𝐵 = (Base‘𝑅)
2 0ring.0 . . . 4 0 = (0g𝑅)
31, 2ring0cl 20290 . . 3 (𝑅 ∈ Ring → 0𝐵)
41fvexi 6934 . . . . 5 𝐵 ∈ V
5 hashen1 14419 . . . . 5 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o))
64, 5ax-mp 5 . . . 4 ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)
7 en1eqsn 9336 . . . . 5 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
87ex 412 . . . 4 ( 0𝐵 → (𝐵 ≈ 1o𝐵 = { 0 }))
96, 8biimtrid 242 . . 3 ( 0𝐵 → ((♯‘𝐵) = 1 → 𝐵 = { 0 }))
103, 9syl 17 . 2 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 }))
1110imp 406 1 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   class class class wbr 5166  cfv 6573  1oc1o 8515  cen 9000  1c1 11185  chash 14379  Basecbs 17258  0gc0g 17499  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262
This theorem is referenced by:  0ringdif  20553  0ring01eq  20555  01eq0ringOLD  20557  0ringsubrg  33223  0ringcring  33224  0ringidl  33414  0ringprmidl  33442  prmidl0  33443  lindsrng01  48197
  Copyright terms: Public domain W3C validator