MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ring Structured version   Visualization version   GIF version

Theorem 0ring 20295
Description: If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
Assertion
Ref Expression
0ring ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })

Proof of Theorem 0ring
StepHypRef Expression
1 0ring.b . . . 4 𝐵 = (Base‘𝑅)
2 0ring.0 . . . 4 0 = (0g𝑅)
31, 2ring0cl 20077 . . 3 (𝑅 ∈ Ring → 0𝐵)
41fvexi 6902 . . . . 5 𝐵 ∈ V
5 hashen1 14326 . . . . 5 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o))
64, 5ax-mp 5 . . . 4 ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)
7 en1eqsn 9270 . . . . 5 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
87ex 413 . . . 4 ( 0𝐵 → (𝐵 ≈ 1o𝐵 = { 0 }))
96, 8biimtrid 241 . . 3 ( 0𝐵 → ((♯‘𝐵) = 1 → 𝐵 = { 0 }))
103, 9syl 17 . 2 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 }))
1110imp 407 1 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4627   class class class wbr 5147  cfv 6540  1oc1o 8455  cen 8932  1c1 11107  chash 14286  Basecbs 17140  0gc0g 17381  Ringcrg 20049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-ring 20051
This theorem is referenced by:  0ring01eq  20296  01eq0ringOLD  20298  0ringsubrg  32366  0ringidl  32527  0ringprmidl  32556  prmidl0  32557  0ringdif  46630  lindsrng01  47102
  Copyright terms: Public domain W3C validator