MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem3 Structured version   Visualization version   GIF version

Theorem pgpfaclem3 18689
Description: Lemma for pgpfac 18690. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
Assertion
Ref Expression
pgpfaclem3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem3
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrd0 13525 . . 3 ∅ ∈ Word 𝐶
2 pgpfac.g . . . . . 6 (𝜑𝐺 ∈ Abel)
3 ablgrp 18404 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 eqid 2771 . . . . . . 7 (0g𝐺) = (0g𝐺)
54dprd0 18637 . . . . . 6 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
62, 3, 53syl 18 . . . . 5 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
76adantr 466 . . . 4 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
8 pgpfac.u . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝐺))
94subg0cl 17809 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑈)
108, 9syl 17 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ 𝑈)
1110adantr 466 . . . . . . 7 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (0g𝐺) ∈ 𝑈)
12 eqid 2771 . . . . . . . . . . 11 (𝐺s 𝑈) = (𝐺s 𝑈)
1312subgbas 17805 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘(𝐺s 𝑈)))
148, 13syl 17 . . . . . . . . 9 (𝜑𝑈 = (Base‘(𝐺s 𝑈)))
1514adantr 466 . . . . . . . 8 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 = (Base‘(𝐺s 𝑈)))
1612subggrp 17804 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → (𝐺s 𝑈) ∈ Grp)
178, 16syl 17 . . . . . . . . . 10 (𝜑 → (𝐺s 𝑈) ∈ Grp)
18 grpmnd 17636 . . . . . . . . . 10 ((𝐺s 𝑈) ∈ Grp → (𝐺s 𝑈) ∈ Mnd)
19 eqid 2771 . . . . . . . . . . 11 (Base‘(𝐺s 𝑈)) = (Base‘(𝐺s 𝑈))
20 eqid 2771 . . . . . . . . . . 11 (gEx‘(𝐺s 𝑈)) = (gEx‘(𝐺s 𝑈))
2119, 20gex1 18212 . . . . . . . . . 10 ((𝐺s 𝑈) ∈ Mnd → ((gEx‘(𝐺s 𝑈)) = 1 ↔ (Base‘(𝐺s 𝑈)) ≈ 1𝑜))
2217, 18, 213syl 18 . . . . . . . . 9 (𝜑 → ((gEx‘(𝐺s 𝑈)) = 1 ↔ (Base‘(𝐺s 𝑈)) ≈ 1𝑜))
2322biimpa 462 . . . . . . . 8 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (Base‘(𝐺s 𝑈)) ≈ 1𝑜)
2415, 23eqbrtrd 4809 . . . . . . 7 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 ≈ 1𝑜)
25 en1eqsn 8349 . . . . . . 7 (((0g𝐺) ∈ 𝑈𝑈 ≈ 1𝑜) → 𝑈 = {(0g𝐺)})
2611, 24, 25syl2anc 573 . . . . . 6 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 = {(0g𝐺)})
2726eqeq2d 2781 . . . . 5 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ((𝐺 DProd ∅) = 𝑈 ↔ (𝐺 DProd ∅) = {(0g𝐺)}))
2827anbi2d 614 . . . 4 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ((𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)})))
297, 28mpbird 247 . . 3 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈))
30 breq2 4791 . . . . 5 (𝑠 = ∅ → (𝐺dom DProd 𝑠𝐺dom DProd ∅))
31 oveq2 6803 . . . . . 6 (𝑠 = ∅ → (𝐺 DProd 𝑠) = (𝐺 DProd ∅))
3231eqeq1d 2773 . . . . 5 (𝑠 = ∅ → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd ∅) = 𝑈))
3330, 32anbi12d 616 . . . 4 (𝑠 = ∅ → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈)))
3433rspcev 3460 . . 3 ((∅ ∈ Word 𝐶 ∧ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
351, 29, 34sylancr 575 . 2 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
3612subgabl 18447 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑈) ∈ Abel)
372, 8, 36syl2anc 573 . . . . 5 (𝜑 → (𝐺s 𝑈) ∈ Abel)
38 pgpfac.f . . . . . . . 8 (𝜑𝐵 ∈ Fin)
39 pgpfac.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
4039subgss 17802 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
418, 40syl 17 . . . . . . . 8 (𝜑𝑈𝐵)
42 ssfi 8339 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
4338, 41, 42syl2anc 573 . . . . . . 7 (𝜑𝑈 ∈ Fin)
4414, 43eqeltrrd 2851 . . . . . 6 (𝜑 → (Base‘(𝐺s 𝑈)) ∈ Fin)
4519, 20gexcl2 18210 . . . . . 6 (((𝐺s 𝑈) ∈ Grp ∧ (Base‘(𝐺s 𝑈)) ∈ Fin) → (gEx‘(𝐺s 𝑈)) ∈ ℕ)
4617, 44, 45syl2anc 573 . . . . 5 (𝜑 → (gEx‘(𝐺s 𝑈)) ∈ ℕ)
47 eqid 2771 . . . . . 6 (od‘(𝐺s 𝑈)) = (od‘(𝐺s 𝑈))
4819, 20, 47gexex 18462 . . . . 5 (((𝐺s 𝑈) ∈ Abel ∧ (gEx‘(𝐺s 𝑈)) ∈ ℕ) → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
4937, 46, 48syl2anc 573 . . . 4 (𝜑 → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
5049adantr 466 . . 3 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
51 eqid 2771 . . . . 5 (mrCls‘(SubGrp‘(𝐺s 𝑈))) = (mrCls‘(SubGrp‘(𝐺s 𝑈)))
52 eqid 2771 . . . . 5 ((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) = ((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})
53 eqid 2771 . . . . 5 (0g‘(𝐺s 𝑈)) = (0g‘(𝐺s 𝑈))
54 eqid 2771 . . . . 5 (LSSum‘(𝐺s 𝑈)) = (LSSum‘(𝐺s 𝑈))
55 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
56 subgpgp 18218 . . . . . . 7 ((𝑃 pGrp 𝐺𝑈 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑈))
5755, 8, 56syl2anc 573 . . . . . 6 (𝜑𝑃 pGrp (𝐺s 𝑈))
5857ad2antrr 705 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → 𝑃 pGrp (𝐺s 𝑈))
5937ad2antrr 705 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → (𝐺s 𝑈) ∈ Abel)
6044ad2antrr 705 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → (Base‘(𝐺s 𝑈)) ∈ Fin)
61 simprr 756 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
62 simprl 754 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → 𝑥 ∈ (Base‘(𝐺s 𝑈)))
6351, 52, 19, 47, 20, 53, 54, 58, 59, 60, 61, 62pgpfac1 18686 . . . 4 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ∃𝑤 ∈ (SubGrp‘(𝐺s 𝑈))((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))
64 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
652ad3antrrr 709 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝐺 ∈ Abel)
6655ad3antrrr 709 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑃 pGrp 𝐺)
6738ad3antrrr 709 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝐵 ∈ Fin)
688ad3antrrr 709 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑈 ∈ (SubGrp‘𝐺))
69 pgpfac.a . . . . . 6 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
7069ad3antrrr 709 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
71 simpllr 760 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (gEx‘(𝐺s 𝑈)) ≠ 1)
72 simplrl 762 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑥 ∈ (Base‘(𝐺s 𝑈)))
7368, 13syl 17 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑈 = (Base‘(𝐺s 𝑈)))
7472, 73eleqtrrd 2853 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑥𝑈)
75 simplrr 763 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
76 simprl 754 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑤 ∈ (SubGrp‘(𝐺s 𝑈)))
77 simprrl 766 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))})
78 simprrr 767 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈)))
7978, 73eqtr4d 2808 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = 𝑈)
8039, 64, 65, 66, 67, 68, 70, 12, 51, 47, 20, 53, 54, 71, 74, 75, 76, 77, 79pgpfaclem2 18688 . . . 4 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8163, 80rexlimddv 3183 . . 3 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8250, 81rexlimddv 3183 . 2 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8335, 82pm2.61dane 3030 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cin 3722  wss 3723  wpss 3724  c0 4063  {csn 4317   class class class wbr 4787  dom cdm 5250  ran crn 5251  cfv 6030  (class class class)co 6795  1𝑜c1o 7709  cen 8109  Fincfn 8112  1c1 10142  cn 11225  Word cword 13486  Basecbs 16063  s cress 16064  0gc0g 16307  mrClscmrc 16450  Mndcmnd 17501  Grpcgrp 17629  SubGrpcsubg 17795  odcod 18150  gExcgex 18151   pGrp cpgp 18152  LSSumclsm 18255  Abelcabl 18400  CycGrpccyg 18485   DProd cdprd 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-rpss 7087  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-tpos 7507  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-omul 7721  df-er 7899  df-ec 7901  df-qs 7905  df-map 8014  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-acn 8971  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-xnn0 11570  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-dvds 15189  df-gcd 15424  df-prm 15592  df-pc 15748  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-eqg 17800  df-ghm 17865  df-gim 17908  df-ga 17929  df-cntz 17956  df-oppg 17982  df-od 18154  df-gex 18155  df-pgp 18156  df-lsm 18257  df-pj1 18258  df-cmn 18401  df-abl 18402  df-cyg 18486  df-dprd 18601
This theorem is referenced by:  pgpfac  18690
  Copyright terms: Public domain W3C validator