MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem3 Structured version   Visualization version   GIF version

Theorem pgpfaclem3 19912
Description: Lemma for pgpfac 19913. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
Assertion
Ref Expression
pgpfaclem3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem3
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrd0 14471 . . 3 ∅ ∈ Word 𝐶
2 pgpfac.g . . . . . 6 (𝜑𝐺 ∈ Abel)
3 ablgrp 19617 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
54dprd0 19860 . . . . . 6 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
62, 3, 53syl 18 . . . . 5 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
76adantr 481 . . . 4 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
8 pgpfac.u . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝐺))
94subg0cl 18986 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑈)
108, 9syl 17 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ 𝑈)
1110adantr 481 . . . . . . 7 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (0g𝐺) ∈ 𝑈)
12 eqid 2731 . . . . . . . . . . 11 (𝐺s 𝑈) = (𝐺s 𝑈)
1312subgbas 18982 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘(𝐺s 𝑈)))
148, 13syl 17 . . . . . . . . 9 (𝜑𝑈 = (Base‘(𝐺s 𝑈)))
1514adantr 481 . . . . . . . 8 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 = (Base‘(𝐺s 𝑈)))
1612subggrp 18981 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → (𝐺s 𝑈) ∈ Grp)
178, 16syl 17 . . . . . . . . . 10 (𝜑 → (𝐺s 𝑈) ∈ Grp)
18 grpmnd 18801 . . . . . . . . . 10 ((𝐺s 𝑈) ∈ Grp → (𝐺s 𝑈) ∈ Mnd)
19 eqid 2731 . . . . . . . . . . 11 (Base‘(𝐺s 𝑈)) = (Base‘(𝐺s 𝑈))
20 eqid 2731 . . . . . . . . . . 11 (gEx‘(𝐺s 𝑈)) = (gEx‘(𝐺s 𝑈))
2119, 20gex1 19423 . . . . . . . . . 10 ((𝐺s 𝑈) ∈ Mnd → ((gEx‘(𝐺s 𝑈)) = 1 ↔ (Base‘(𝐺s 𝑈)) ≈ 1o))
2217, 18, 213syl 18 . . . . . . . . 9 (𝜑 → ((gEx‘(𝐺s 𝑈)) = 1 ↔ (Base‘(𝐺s 𝑈)) ≈ 1o))
2322biimpa 477 . . . . . . . 8 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (Base‘(𝐺s 𝑈)) ≈ 1o)
2415, 23eqbrtrd 5163 . . . . . . 7 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 ≈ 1o)
25 en1eqsn 9257 . . . . . . 7 (((0g𝐺) ∈ 𝑈𝑈 ≈ 1o) → 𝑈 = {(0g𝐺)})
2611, 24, 25syl2anc 584 . . . . . 6 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → 𝑈 = {(0g𝐺)})
2726eqeq2d 2742 . . . . 5 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ((𝐺 DProd ∅) = 𝑈 ↔ (𝐺 DProd ∅) = {(0g𝐺)}))
2827anbi2d 629 . . . 4 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ((𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)})))
297, 28mpbird 256 . . 3 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈))
30 breq2 5145 . . . . 5 (𝑠 = ∅ → (𝐺dom DProd 𝑠𝐺dom DProd ∅))
31 oveq2 7401 . . . . . 6 (𝑠 = ∅ → (𝐺 DProd 𝑠) = (𝐺 DProd ∅))
3231eqeq1d 2733 . . . . 5 (𝑠 = ∅ → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd ∅) = 𝑈))
3330, 32anbi12d 631 . . . 4 (𝑠 = ∅ → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈)))
3433rspcev 3609 . . 3 ((∅ ∈ Word 𝐶 ∧ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
351, 29, 34sylancr 587 . 2 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) = 1) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
3612subgabl 19664 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑈) ∈ Abel)
372, 8, 36syl2anc 584 . . . . 5 (𝜑 → (𝐺s 𝑈) ∈ Abel)
38 pgpfac.f . . . . . . . 8 (𝜑𝐵 ∈ Fin)
39 pgpfac.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
4039subgss 18979 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
418, 40syl 17 . . . . . . . 8 (𝜑𝑈𝐵)
4238, 41ssfid 9250 . . . . . . 7 (𝜑𝑈 ∈ Fin)
4314, 42eqeltrrd 2833 . . . . . 6 (𝜑 → (Base‘(𝐺s 𝑈)) ∈ Fin)
4419, 20gexcl2 19421 . . . . . 6 (((𝐺s 𝑈) ∈ Grp ∧ (Base‘(𝐺s 𝑈)) ∈ Fin) → (gEx‘(𝐺s 𝑈)) ∈ ℕ)
4517, 43, 44syl2anc 584 . . . . 5 (𝜑 → (gEx‘(𝐺s 𝑈)) ∈ ℕ)
46 eqid 2731 . . . . . 6 (od‘(𝐺s 𝑈)) = (od‘(𝐺s 𝑈))
4719, 20, 46gexex 19681 . . . . 5 (((𝐺s 𝑈) ∈ Abel ∧ (gEx‘(𝐺s 𝑈)) ∈ ℕ) → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
4837, 45, 47syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
4948adantr 481 . . 3 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) → ∃𝑥 ∈ (Base‘(𝐺s 𝑈))((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
50 eqid 2731 . . . . 5 (mrCls‘(SubGrp‘(𝐺s 𝑈))) = (mrCls‘(SubGrp‘(𝐺s 𝑈)))
51 eqid 2731 . . . . 5 ((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) = ((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})
52 eqid 2731 . . . . 5 (0g‘(𝐺s 𝑈)) = (0g‘(𝐺s 𝑈))
53 eqid 2731 . . . . 5 (LSSum‘(𝐺s 𝑈)) = (LSSum‘(𝐺s 𝑈))
54 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
55 subgpgp 19429 . . . . . . 7 ((𝑃 pGrp 𝐺𝑈 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑈))
5654, 8, 55syl2anc 584 . . . . . 6 (𝜑𝑃 pGrp (𝐺s 𝑈))
5756ad2antrr 724 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → 𝑃 pGrp (𝐺s 𝑈))
5837ad2antrr 724 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → (𝐺s 𝑈) ∈ Abel)
5943ad2antrr 724 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → (Base‘(𝐺s 𝑈)) ∈ Fin)
60 simprr 771 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
61 simprl 769 . . . . 5 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → 𝑥 ∈ (Base‘(𝐺s 𝑈)))
6250, 51, 19, 46, 20, 52, 53, 57, 58, 59, 60, 61pgpfac1 19909 . . . 4 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ∃𝑤 ∈ (SubGrp‘(𝐺s 𝑈))((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))
63 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
642ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝐺 ∈ Abel)
6554ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑃 pGrp 𝐺)
6638ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝐵 ∈ Fin)
678ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑈 ∈ (SubGrp‘𝐺))
68 pgpfac.a . . . . . 6 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
6968ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
70 simpllr 774 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (gEx‘(𝐺s 𝑈)) ≠ 1)
71 simplrl 775 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑥 ∈ (Base‘(𝐺s 𝑈)))
7267, 13syl 17 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑈 = (Base‘(𝐺s 𝑈)))
7371, 72eleqtrrd 2835 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑥𝑈)
74 simplrr 776 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))
75 simprl 769 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → 𝑤 ∈ (SubGrp‘(𝐺s 𝑈)))
76 simprrl 779 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))})
77 simprrr 780 . . . . . 6 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈)))
7877, 72eqtr4d 2774 . . . . 5 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = 𝑈)
7939, 63, 64, 65, 66, 67, 69, 12, 50, 46, 20, 52, 53, 70, 73, 74, 75, 76, 78pgpfaclem2 19911 . . . 4 ((((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) ∧ (𝑤 ∈ (SubGrp‘(𝐺s 𝑈)) ∧ ((((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥}) ∩ 𝑤) = {(0g‘(𝐺s 𝑈))} ∧ (((mrCls‘(SubGrp‘(𝐺s 𝑈)))‘{𝑥})(LSSum‘(𝐺s 𝑈))𝑤) = (Base‘(𝐺s 𝑈))))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8062, 79rexlimddv 3160 . . 3 (((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) ∧ (𝑥 ∈ (Base‘(𝐺s 𝑈)) ∧ ((od‘(𝐺s 𝑈))‘𝑥) = (gEx‘(𝐺s 𝑈)))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8149, 80rexlimddv 3160 . 2 ((𝜑 ∧ (gEx‘(𝐺s 𝑈)) ≠ 1) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
8235, 81pm2.61dane 3028 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  {crab 3431  cin 3943  wss 3944  wpss 3945  c0 4318  {csn 4622   class class class wbr 5141  dom cdm 5669  ran crn 5670  cfv 6532  (class class class)co 7393  1oc1o 8441  cen 8919  Fincfn 8922  1c1 11093  cn 12194  Word cword 14446  Basecbs 17126  s cress 17155  0gc0g 17367  mrClscmrc 17509  Mndcmnd 18602  Grpcgrp 18794  SubGrpcsubg 18972  odcod 19356  gExcgex 19357   pGrp cpgp 19358  LSSumclsm 19466  Abelcabl 19613  CycGrpccyg 19704   DProd cdprd 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-rpss 7696  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-oadd 8452  df-omul 8453  df-er 8686  df-ec 8688  df-qs 8692  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-inf 9420  df-oi 9487  df-dju 9878  df-card 9916  df-acn 9919  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-xnn0 12527  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-word 14447  df-concat 14503  df-s1 14528  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-sum 15615  df-dvds 16180  df-gcd 16418  df-prm 16591  df-pc 16752  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-0g 17369  df-gsum 17370  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-subg 18975  df-eqg 18977  df-ghm 19056  df-gim 19099  df-ga 19120  df-cntz 19147  df-oppg 19174  df-od 19360  df-gex 19361  df-pgp 19362  df-lsm 19468  df-pj1 19469  df-cmn 19614  df-abl 19615  df-cyg 19705  df-dprd 19824
This theorem is referenced by:  pgpfac  19913
  Copyright terms: Public domain W3C validator