| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cyg | Structured version Visualization version GIF version | ||
| Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| 0cyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . 2 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 3 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Grp) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | 1, 4 | grpidcl 18862 | . . 3 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0g‘𝐺) ∈ 𝐵) |
| 7 | 0z 12500 | . . 3 ⊢ 0 ∈ ℤ | |
| 8 | en1eqsn 9177 | . . . . . . . 8 ⊢ (((0g‘𝐺) ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) | |
| 9 | 5, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) |
| 10 | 9 | eleq2d 2814 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
| 11 | 10 | biimpa 476 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ {(0g‘𝐺)}) |
| 12 | velsn 4595 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0g‘𝐺)) |
| 14 | 1, 4, 2 | mulg0 18971 | . . . . . 6 ⊢ ((0g‘𝐺) ∈ 𝐵 → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
| 15 | 6, 14 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
| 17 | 13, 16 | eqtr4d 2767 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) |
| 18 | oveq1 7360 | . . . 4 ⊢ (𝑛 = 0 → (𝑛(.g‘𝐺)(0g‘𝐺)) = (0(.g‘𝐺)(0g‘𝐺))) | |
| 19 | 18 | rspceeqv 3602 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
| 20 | 7, 17, 19 | sylancr 587 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
| 21 | 1, 2, 3, 6, 20 | iscygd 19784 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1oc1o 8388 ≈ cen 8876 0cc0 11028 ℤcz 12489 Basecbs 17138 0gc0g 17361 Grpcgrp 18830 .gcmg 18964 CycGrpccyg 19774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-mulg 18965 df-cyg 19775 |
| This theorem is referenced by: lt6abl 19792 frgpcyg 21498 |
| Copyright terms: Public domain | W3C validator |