![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cyg | Structured version Visualization version GIF version |
Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0cyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2728 | . 2 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Grp) | |
4 | eqid 2728 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18915 | . . 3 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0g‘𝐺) ∈ 𝐵) |
7 | 0z 12593 | . . 3 ⊢ 0 ∈ ℤ | |
8 | en1eqsn 9292 | . . . . . . . 8 ⊢ (((0g‘𝐺) ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) | |
9 | 5, 8 | sylan 579 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) |
10 | 9 | eleq2d 2815 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
11 | 10 | biimpa 476 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ {(0g‘𝐺)}) |
12 | velsn 4640 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0g‘𝐺)) |
14 | 1, 4, 2 | mulg0 19023 | . . . . . 6 ⊢ ((0g‘𝐺) ∈ 𝐵 → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
17 | 13, 16 | eqtr4d 2771 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) |
18 | oveq1 7421 | . . . 4 ⊢ (𝑛 = 0 → (𝑛(.g‘𝐺)(0g‘𝐺)) = (0(.g‘𝐺)(0g‘𝐺))) | |
19 | 18 | rspceeqv 3630 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
20 | 7, 17, 19 | sylancr 586 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
21 | 1, 2, 3, 6, 20 | iscygd 19835 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 1oc1o 8473 ≈ cen 8954 0cc0 11132 ℤcz 12582 Basecbs 17173 0gc0g 17414 Grpcgrp 18883 .gcmg 19016 CycGrpccyg 19825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-seq 13993 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-mulg 19017 df-cyg 19826 |
This theorem is referenced by: lt6abl 19843 frgpcyg 21500 |
Copyright terms: Public domain | W3C validator |