![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cyg | Structured version Visualization version GIF version |
Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0cyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2732 | . 2 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | simpl 483 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Grp) | |
4 | eqid 2732 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18852 | . . 3 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0g‘𝐺) ∈ 𝐵) |
7 | 0z 12571 | . . 3 ⊢ 0 ∈ ℤ | |
8 | en1eqsn 9276 | . . . . . . . 8 ⊢ (((0g‘𝐺) ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) | |
9 | 5, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) |
10 | 9 | eleq2d 2819 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
11 | 10 | biimpa 477 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ {(0g‘𝐺)}) |
12 | velsn 4644 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0g‘𝐺)) |
14 | 1, 4, 2 | mulg0 18959 | . . . . . 6 ⊢ ((0g‘𝐺) ∈ 𝐵 → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
16 | 15 | adantr 481 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
17 | 13, 16 | eqtr4d 2775 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) |
18 | oveq1 7418 | . . . 4 ⊢ (𝑛 = 0 → (𝑛(.g‘𝐺)(0g‘𝐺)) = (0(.g‘𝐺)(0g‘𝐺))) | |
19 | 18 | rspceeqv 3633 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
20 | 7, 17, 19 | sylancr 587 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
21 | 1, 2, 3, 6, 20 | iscygd 19757 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 1oc1o 8461 ≈ cen 8938 0cc0 11112 ℤcz 12560 Basecbs 17146 0gc0g 17387 Grpcgrp 18821 .gcmg 18952 CycGrpccyg 19747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-n0 12475 df-z 12561 df-uz 12825 df-fz 13487 df-seq 13969 df-0g 17389 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-mulg 18953 df-cyg 19748 |
This theorem is referenced by: lt6abl 19765 frgpcyg 21135 |
Copyright terms: Public domain | W3C validator |