Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrto1cl Structured version   Visualization version   GIF version

Theorem pmtrto1cl 33060
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
pmtrto1cl.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrto1cl ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)

Proof of Theorem pmtrto1cl
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 fzfi 13898 . . . 4 (1...𝑁) ∈ Fin
31, 2eqeltri 2824 . . 3 𝐷 ∈ Fin
43a1i 11 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin)
5 simpl 482 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ)
6 simpr 484 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷)
76, 1eleqtrdi 2838 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁))
8 elfz1b 13515 . . . . . . . 8 ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
97, 8sylib 218 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
109simp2d 1143 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ)
115nnred 12162 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ)
12 1red 11135 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ)
1311, 12readdcld 11163 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ)
1410nnred 12162 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ)
1511lep1d 12075 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1))
169simp3d 1144 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁)
1711, 13, 14, 15, 16letrd 11292 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝑁)
185, 10, 173jca 1128 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
19 elfz1b 13515 . . . . 5 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
2018, 19sylibr 234 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁))
2120, 1eleqtrrdi 2839 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝐷)
22 prssi 4775 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2321, 6, 22syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2411ltp1d 12074 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1))
2511, 24ltned 11271 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1))
26 enpr2 9917 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o)
2721, 6, 25, 26syl3anc 1373 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o)
28 pmtrto1cl.t . . 3 𝑇 = (pmTrsp‘𝐷)
29 eqid 2729 . . 3 ran 𝑇 = ran 𝑇
3028, 29pmtrrn 19355 . 2 ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
314, 23, 27, 30syl3anc 1373 1 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  {cpr 4581   class class class wbr 5095  ran crn 5624  cfv 6486  (class class class)co 7353  2oc2o 8389  cen 8876  Fincfn 8879  1c1 11029   + caddc 11031  cle 11169  cn 12147  ...cfz 13429  pmTrspcpmtr 19339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-pmtr 19340
This theorem is referenced by:  psgnfzto1stlem  33061  fzto1st  33064  psgnfzto1st  33066
  Copyright terms: Public domain W3C validator