![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrto1cl | Structured version Visualization version GIF version |
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
pmtrto1cl.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrto1cl | ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
2 | fzfi 13943 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
3 | 1, 2 | eqeltri 2823 | . . 3 ⊢ 𝐷 ∈ Fin |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin) |
5 | simpl 482 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ) | |
6 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷) | |
7 | 6, 1 | eleqtrdi 2837 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁)) |
8 | elfz1b 13576 | . . . . . . . 8 ⊢ ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) | |
9 | 7, 8 | sylib 217 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) |
10 | 9 | simp2d 1140 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ) |
11 | 5 | nnred 12231 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ) |
12 | 1red 11219 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ) | |
13 | 11, 12 | readdcld 11247 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ) |
14 | 10 | nnred 12231 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ) |
15 | 11 | lep1d 12149 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1)) |
16 | 9 | simp3d 1141 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁) |
17 | 11, 13, 14, 15, 16 | letrd 11375 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ 𝑁) |
18 | 5, 10, 17 | 3jca 1125 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) |
19 | elfz1b 13576 | . . . . 5 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
20 | 18, 19 | sylibr 233 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁)) |
21 | 20, 1 | eleqtrrdi 2838 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ 𝐷) |
22 | prssi 4819 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) | |
23 | 21, 6, 22 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) |
24 | 11 | ltp1d 12148 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1)) |
25 | 11, 24 | ltned 11354 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1)) |
26 | enpr2 9999 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷 ∧ 𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o) | |
27 | 21, 6, 25, 26 | syl3anc 1368 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o) |
28 | pmtrto1cl.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
29 | eqid 2726 | . . 3 ⊢ ran 𝑇 = ran 𝑇 | |
30 | 28, 29 | pmtrrn 19377 | . 2 ⊢ ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
31 | 4, 23, 27, 30 | syl3anc 1368 | 1 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ⊆ wss 3943 {cpr 4625 class class class wbr 5141 ran crn 5670 ‘cfv 6537 (class class class)co 7405 2oc2o 8461 ≈ cen 8938 Fincfn 8941 1c1 11113 + caddc 11115 ≤ cle 11253 ℕcn 12216 ...cfz 13490 pmTrspcpmtr 19361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-pmtr 19362 |
This theorem is referenced by: psgnfzto1stlem 32765 fzto1st 32768 psgnfzto1st 32770 |
Copyright terms: Public domain | W3C validator |