![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrto1cl | Structured version Visualization version GIF version |
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
pmtrto1cl.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrto1cl | ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
2 | fzfi 14010 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
3 | 1, 2 | eqeltri 2835 | . . 3 ⊢ 𝐷 ∈ Fin |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin) |
5 | simpl 482 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ) | |
6 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷) | |
7 | 6, 1 | eleqtrdi 2849 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁)) |
8 | elfz1b 13630 | . . . . . . . 8 ⊢ ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) | |
9 | 7, 8 | sylib 218 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) |
10 | 9 | simp2d 1142 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ) |
11 | 5 | nnred 12279 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ) |
12 | 1red 11260 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ) | |
13 | 11, 12 | readdcld 11288 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ) |
14 | 10 | nnred 12279 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ) |
15 | 11 | lep1d 12197 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1)) |
16 | 9 | simp3d 1143 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁) |
17 | 11, 13, 14, 15, 16 | letrd 11416 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ 𝑁) |
18 | 5, 10, 17 | 3jca 1127 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) |
19 | elfz1b 13630 | . . . . 5 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
20 | 18, 19 | sylibr 234 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁)) |
21 | 20, 1 | eleqtrrdi 2850 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ 𝐷) |
22 | prssi 4826 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) | |
23 | 21, 6, 22 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) |
24 | 11 | ltp1d 12196 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1)) |
25 | 11, 24 | ltned 11395 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1)) |
26 | enpr2 10040 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷 ∧ 𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o) | |
27 | 21, 6, 25, 26 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o) |
28 | pmtrto1cl.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
29 | eqid 2735 | . . 3 ⊢ ran 𝑇 = ran 𝑇 | |
30 | 28, 29 | pmtrrn 19490 | . 2 ⊢ ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
31 | 4, 23, 27, 30 | syl3anc 1370 | 1 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 {cpr 4633 class class class wbr 5148 ran crn 5690 ‘cfv 6563 (class class class)co 7431 2oc2o 8499 ≈ cen 8981 Fincfn 8984 1c1 11154 + caddc 11156 ≤ cle 11294 ℕcn 12264 ...cfz 13544 pmTrspcpmtr 19474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-pmtr 19475 |
This theorem is referenced by: psgnfzto1stlem 33103 fzto1st 33106 psgnfzto1st 33108 |
Copyright terms: Public domain | W3C validator |