Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrto1cl Structured version   Visualization version   GIF version

Theorem pmtrto1cl 30772
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
pmtrto1cl.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrto1cl ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)

Proof of Theorem pmtrto1cl
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 fzfi 13335 . . . 4 (1...𝑁) ∈ Fin
31, 2eqeltri 2910 . . 3 𝐷 ∈ Fin
43a1i 11 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin)
5 simpl 486 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ)
6 simpr 488 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷)
76, 1eleqtrdi 2924 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁))
8 elfz1b 12971 . . . . . . . 8 ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
97, 8sylib 221 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
109simp2d 1140 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ)
115nnred 11640 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ)
12 1red 10631 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ)
1311, 12readdcld 10659 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ)
1410nnred 11640 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ)
1511lep1d 11560 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1))
169simp3d 1141 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁)
1711, 13, 14, 15, 16letrd 10786 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝑁)
185, 10, 173jca 1125 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
19 elfz1b 12971 . . . . 5 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
2018, 19sylibr 237 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁))
2120, 1eleqtrrdi 2925 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝐷)
22 prssi 4727 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2321, 6, 22syl2anc 587 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2411ltp1d 11559 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1))
2511, 24ltned 10765 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1))
26 pr2nelem 9419 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o)
2721, 6, 25, 26syl3anc 1368 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o)
28 pmtrto1cl.t . . 3 𝑇 = (pmTrsp‘𝐷)
29 eqid 2822 . . 3 ran 𝑇 = ran 𝑇
3028, 29pmtrrn 18576 . 2 ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
314, 23, 27, 30syl3anc 1368 1 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wss 3908  {cpr 4541   class class class wbr 5042  ran crn 5533  cfv 6334  (class class class)co 7140  2oc2o 8083  cen 8493  Fincfn 8496  1c1 10527   + caddc 10529  cle 10665  cn 11625  ...cfz 12885  pmTrspcpmtr 18560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-pmtr 18561
This theorem is referenced by:  psgnfzto1stlem  30773  fzto1st  30776  psgnfzto1st  30778
  Copyright terms: Public domain W3C validator