Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrto1cl | Structured version Visualization version GIF version |
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
pmtrto1cl.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrto1cl | ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
2 | fzfi 13692 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
3 | 1, 2 | eqeltri 2835 | . . 3 ⊢ 𝐷 ∈ Fin |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin) |
5 | simpl 483 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ) | |
6 | simpr 485 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷) | |
7 | 6, 1 | eleqtrdi 2849 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁)) |
8 | elfz1b 13325 | . . . . . . . 8 ⊢ ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) | |
9 | 7, 8 | sylib 217 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁)) |
10 | 9 | simp2d 1142 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ) |
11 | 5 | nnred 11988 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ) |
12 | 1red 10976 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ) | |
13 | 11, 12 | readdcld 11004 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ) |
14 | 10 | nnred 11988 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ) |
15 | 11 | lep1d 11906 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1)) |
16 | 9 | simp3d 1143 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁) |
17 | 11, 13, 14, 15, 16 | letrd 11132 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ 𝑁) |
18 | 5, 10, 17 | 3jca 1127 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) |
19 | elfz1b 13325 | . . . . 5 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
20 | 18, 19 | sylibr 233 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁)) |
21 | 20, 1 | eleqtrrdi 2850 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ 𝐷) |
22 | prssi 4754 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) | |
23 | 21, 6, 22 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷) |
24 | 11 | ltp1d 11905 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1)) |
25 | 11, 24 | ltned 11111 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1)) |
26 | pr2nelem 9760 | . . 3 ⊢ ((𝐾 ∈ 𝐷 ∧ (𝐾 + 1) ∈ 𝐷 ∧ 𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o) | |
27 | 21, 6, 25, 26 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o) |
28 | pmtrto1cl.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
29 | eqid 2738 | . . 3 ⊢ ran 𝑇 = ran 𝑇 | |
30 | 28, 29 | pmtrrn 19065 | . 2 ⊢ ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
31 | 4, 23, 27, 30 | syl3anc 1370 | 1 ⊢ ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 {cpr 4563 class class class wbr 5074 ran crn 5590 ‘cfv 6433 (class class class)co 7275 2oc2o 8291 ≈ cen 8730 Fincfn 8733 1c1 10872 + caddc 10874 ≤ cle 11010 ℕcn 11973 ...cfz 13239 pmTrspcpmtr 19049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-pmtr 19050 |
This theorem is referenced by: psgnfzto1stlem 31367 fzto1st 31370 psgnfzto1st 31372 |
Copyright terms: Public domain | W3C validator |