Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrto1cl Structured version   Visualization version   GIF version

Theorem pmtrto1cl 31497
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
pmtrto1cl.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrto1cl ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)

Proof of Theorem pmtrto1cl
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 fzfi 13771 . . . 4 (1...𝑁) ∈ Fin
31, 2eqeltri 2833 . . 3 𝐷 ∈ Fin
43a1i 11 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin)
5 simpl 483 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ)
6 simpr 485 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷)
76, 1eleqtrdi 2847 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁))
8 elfz1b 13404 . . . . . . . 8 ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
97, 8sylib 217 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
109simp2d 1142 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ)
115nnred 12067 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ)
12 1red 11055 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ)
1311, 12readdcld 11083 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ)
1410nnred 12067 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ)
1511lep1d 11985 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1))
169simp3d 1143 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁)
1711, 13, 14, 15, 16letrd 11211 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝑁)
185, 10, 173jca 1127 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
19 elfz1b 13404 . . . . 5 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
2018, 19sylibr 233 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁))
2120, 1eleqtrrdi 2848 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝐷)
22 prssi 4765 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2321, 6, 22syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2411ltp1d 11984 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1))
2511, 24ltned 11190 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1))
26 enpr2 9837 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2o)
2721, 6, 25, 26syl3anc 1370 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2o)
28 pmtrto1cl.t . . 3 𝑇 = (pmTrsp‘𝐷)
29 eqid 2736 . . 3 ran 𝑇 = ran 𝑇
3028, 29pmtrrn 19138 . 2 ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2o) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
314, 23, 27, 30syl3anc 1370 1 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wss 3896  {cpr 4572   class class class wbr 5086  ran crn 5608  cfv 6465  (class class class)co 7316  2oc2o 8339  cen 8779  Fincfn 8782  1c1 10951   + caddc 10953  cle 11089  cn 12052  ...cfz 13318  pmTrspcpmtr 19122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-pmtr 19123
This theorem is referenced by:  psgnfzto1stlem  31498  fzto1st  31501  psgnfzto1st  31503
  Copyright terms: Public domain W3C validator