![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gtneii | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
gtneii | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . 2 ⊢ 𝐴 < 𝐵 | |
3 | ltne 10584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 ≠ wne 2984 class class class wbr 4962 ℝcr 10382 < clt 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-pre-lttri 10457 ax-pre-lttrn 10458 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-ltxr 10526 |
This theorem is referenced by: ltneii 10600 fztpval 12819 geo2sum 15062 bpoly4 15246 ene1 15396 3dvds 15513 3lcm2e6 15901 resslem 16386 rescco 16931 oppgtset 18221 mgpsca 18936 mgptset 18937 mgpds 18939 cnfldfun 20239 psgnodpmr 20416 matsca 20708 matvsca 20709 tuslem 22559 setsmsds 22769 tngds 22940 logbrec 25041 2logb9irr 25054 2logb3irr 25056 log2le1 25210 2lgsoddprmlem3a 25668 2lgsoddprmlem3b 25669 2lgsoddprmlem3c 25670 2lgsoddprmlem3d 25671 konigsberglem2 27722 ex-dif 27894 ex-in 27896 ex-pss 27899 ex-res 27912 dp20u 30238 dp20h 30239 dp2clq 30241 dp2lt10 30244 dp2lt 30245 dplti 30265 dpexpp1 30268 oppgle 30314 resvvsca 30561 zlmds 30822 zlmtset 30823 ballotlemi1 31377 sgnnbi 31420 sgnpbi 31421 signswch 31448 itgexpif 31494 hgt750lemd 31536 hgt750lem 31539 fdc 34552 areaquad 39308 stirlinglem4 41904 stirlinglem13 41913 stirlinglem14 41914 stirlingr 41917 dirker2re 41919 dirkerdenne0 41920 dirkerre 41922 dirkertrigeqlem1 41925 dirkercncflem2 41931 dirkercncflem4 41933 fourierdlem16 41950 fourierdlem21 41955 fourierdlem22 41956 fourierdlem66 41999 fourierdlem83 42016 fourierdlem103 42036 fourierdlem104 42037 sqwvfoura 42055 sqwvfourb 42056 fourierswlem 42057 fouriersw 42058 etransclem46 42107 fmtnoprmfac2lem1 43210 zlmodzxzldeplem 44033 |
Copyright terms: Public domain | W3C validator |