MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd0 Structured version   Visualization version   GIF version

Theorem wrd0 14504
Description: The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
wrd0 ∅ ∈ Word 𝑆

Proof of Theorem wrd0
StepHypRef Expression
1 f0 6741 . 2 ∅:∅⟶𝑆
2 iswrddm0 14503 . 2 (∅:∅⟶𝑆 → ∅ ∈ Word 𝑆)
31, 2ax-mp 5 1 ∅ ∈ Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  c0 4296  wf 6507  Word cword 14478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-word 14479
This theorem is referenced by:  0wrd0  14505  lsw0g  14531  ccatlid  14551  ccatrid  14552  ccatidid  14555  swrdcl  14610  swrdwrdsymb  14627  pfxcl  14642  rev0  14729  cshwcl  14763  gsumwspan  18773  frmdmnd  18786  frmd0  18787  frmdsssubm  18788  frmdup1  18791  psgnunilem2  19425  psgn0fv0  19441  psgnsn  19450  psgnprfval1  19452  efginvrel2  19657  efgredleme  19673  efgcpbllemb  19685  efgcpbl2  19687  frgp0  19690  frgpnabllem1  19803  pgpfaclem3  20015  0ewlk  30043  0wlk  30045  konigsberglem1  30181  konigsberglem2  30182  konigsberglem3  30183  cyc3genpmlem  33108  cyc3genpm  33109  elrgspnlem2  33194  1arithufdlem4  33518  signsvf0  34571  mrsub0  35503  elmrsubrn  35507  upwordnul  46878
  Copyright terms: Public domain W3C validator