| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrd0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.) |
| Ref | Expression |
|---|---|
| wrd0 | ⊢ ∅ ∈ Word 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6764 | . 2 ⊢ ∅:∅⟶𝑆 | |
| 2 | iswrddm0 14561 | . 2 ⊢ (∅:∅⟶𝑆 → ∅ ∈ Word 𝑆) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∅ ∈ Word 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4313 ⟶wf 6532 Word cword 14536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-word 14537 |
| This theorem is referenced by: 0wrd0 14563 lsw0g 14589 ccatlid 14609 ccatrid 14610 ccatidid 14613 swrdcl 14668 swrdwrdsymb 14685 pfxcl 14700 rev0 14787 cshwcl 14821 gsumwspan 18829 frmdmnd 18842 frmd0 18843 frmdsssubm 18844 frmdup1 18847 psgnunilem2 19481 psgn0fv0 19497 psgnsn 19506 psgnprfval1 19508 efginvrel2 19713 efgredleme 19729 efgcpbllemb 19741 efgcpbl2 19743 frgp0 19746 frgpnabllem1 19859 pgpfaclem3 20071 0ewlk 30100 0wlk 30102 konigsberglem1 30238 konigsberglem2 30239 konigsberglem3 30240 cyc3genpmlem 33167 cyc3genpm 33168 elrgspnlem2 33243 1arithufdlem4 33567 signsvf0 34617 mrsub0 35543 elmrsubrn 35547 upwordnul 46876 |
| Copyright terms: Public domain | W3C validator |