MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd0 Structured version   Visualization version   GIF version

Theorem wrd0 14511
Description: The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
wrd0 ∅ ∈ Word 𝑆

Proof of Theorem wrd0
StepHypRef Expression
1 f0 6744 . 2 ∅:∅⟶𝑆
2 iswrddm0 14510 . 2 (∅:∅⟶𝑆 → ∅ ∈ Word 𝑆)
31, 2ax-mp 5 1 ∅ ∈ Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  c0 4299  wf 6510  Word cword 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-word 14486
This theorem is referenced by:  0wrd0  14512  lsw0g  14538  ccatlid  14558  ccatrid  14559  ccatidid  14562  swrdcl  14617  swrdwrdsymb  14634  pfxcl  14649  rev0  14736  cshwcl  14770  gsumwspan  18780  frmdmnd  18793  frmd0  18794  frmdsssubm  18795  frmdup1  18798  psgnunilem2  19432  psgn0fv0  19448  psgnsn  19457  psgnprfval1  19459  efginvrel2  19664  efgredleme  19680  efgcpbllemb  19692  efgcpbl2  19694  frgp0  19697  frgpnabllem1  19810  pgpfaclem3  20022  0ewlk  30050  0wlk  30052  konigsberglem1  30188  konigsberglem2  30189  konigsberglem3  30190  cyc3genpmlem  33115  cyc3genpm  33116  elrgspnlem2  33201  1arithufdlem4  33525  signsvf0  34578  mrsub0  35510  elmrsubrn  35514  upwordnul  46885
  Copyright terms: Public domain W3C validator