MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfelbas Structured version   Visualization version   GIF version

Theorem fcfelbas 23410
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfelbas (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ)) β†’ 𝐴 ∈ 𝑋)

Proof of Theorem fcfelbas
StepHypRef Expression
1 fcfval 23407 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ ((𝐽 fClusf 𝐿)β€˜πΉ) = (𝐽 fClus ((𝑋 FilMap 𝐹)β€˜πΏ)))
21eleq2d 2820 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ (𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)β€˜πΏ))))
3 eqid 2733 . . . . 5 βˆͺ 𝐽 = βˆͺ 𝐽
43fclselbas 23390 . . . 4 (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)β€˜πΏ)) β†’ 𝐴 ∈ βˆͺ 𝐽)
52, 4syl6bi 253 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ (𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ) β†’ 𝐴 ∈ βˆͺ 𝐽))
65imp 408 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ)) β†’ 𝐴 ∈ βˆͺ 𝐽)
7 simpl1 1192 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
8 toponuni 22286 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
97, 8syl 17 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ)) β†’ 𝑋 = βˆͺ 𝐽)
106, 9eleqtrrd 2837 1 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)β€˜πΉ)) β†’ 𝐴 ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆͺ cuni 4869  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361  TopOnctopon 22282  Filcfil 23219   FilMap cfm 23307   fClus cfcls 23310   fClusf cfcf 23311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-map 8773  df-fbas 20816  df-top 22266  df-topon 22283  df-cld 22393  df-ntr 22394  df-cls 22395  df-fil 23220  df-fcls 23315  df-fcf 23316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator