MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfelbas Structured version   Visualization version   GIF version

Theorem fcfelbas 23187
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfelbas (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴𝑋)

Proof of Theorem fcfelbas
StepHypRef Expression
1 fcfval 23184 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2824 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))))
3 eqid 2738 . . . . 5 𝐽 = 𝐽
43fclselbas 23167 . . . 4 (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) → 𝐴 𝐽)
52, 4syl6bi 252 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → 𝐴 𝐽))
65imp 407 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴 𝐽)
7 simpl1 1190 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
8 toponuni 22063 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
97, 8syl 17 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝑋 = 𝐽)
106, 9eleqtrrd 2842 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   cuni 4839  wf 6429  cfv 6433  (class class class)co 7275  TopOnctopon 22059  Filcfil 22996   FilMap cfm 23084   fClus cfcls 23087   fClusf cfcf 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-fbas 20594  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-fil 22997  df-fcls 23092  df-fcf 23093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator