Proof of Theorem fuco22natlem3
Step | Hyp | Ref
| Expression |
1 | | fuco22natlem1.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
2 | | fuco22natlem1.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
3 | | fuco22natlem1.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
4 | | fuco22natlem1.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
5 | | fuco22natlem2.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
6 | 1, 2, 3, 4, 5 | fuco22natlem2 48910 |
. 2
⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) |
7 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
8 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
9 | | eqid 2737 |
. . . . . . . 8
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
10 | 9, 3 | natrcl2 48870 |
. . . . . . 7
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 7, 8, 10 | funcf1 17926 |
. . . . . 6
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
12 | 11, 1 | fvco3d 7016 |
. . . . 5
⊢ (𝜑 → ((𝐾 ∘ 𝐹)‘𝑋) = (𝐾‘(𝐹‘𝑋))) |
13 | 11, 2 | fvco3d 7016 |
. . . . 5
⊢ (𝜑 → ((𝐾 ∘ 𝐹)‘𝑌) = (𝐾‘(𝐹‘𝑌))) |
14 | 12, 13 | opeq12d 4889 |
. . . 4
⊢ (𝜑 → 〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉) |
15 | 9, 3 | natrcl3 48871 |
. . . . . 6
⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
16 | 7, 8, 15 | funcf1 17926 |
. . . . 5
⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
17 | 16, 2 | fvco3d 7016 |
. . . 4
⊢ (𝜑 → ((𝑅 ∘ 𝑀)‘𝑌) = (𝑅‘(𝑀‘𝑌))) |
18 | 14, 17 | oveq12d 7456 |
. . 3
⊢ (𝜑 → (〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌)) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))) |
19 | | fuco22natlem3.o |
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
20 | | fuco22natlem3.u |
. . . 4
⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
21 | | fuco22natlem3.v |
. . . 4
⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
22 | | eqidd 2738 |
. . . 4
⊢ (𝜑 → (〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌))) = (〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))) |
23 | 19, 20, 21, 3, 5, 2,
22 | fuco23 48908 |
. . 3
⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌) = ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))) |
24 | | eqid 2737 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
25 | | eqid 2737 |
. . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
26 | 7, 24, 25, 10, 1, 2 | funcf2 17928 |
. . . 4
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
27 | 26, 4 | fvco3d 7016 |
. . 3
⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) |
28 | 18, 23, 27 | oveq123d 7459 |
. 2
⊢ (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻)))) |
29 | 16, 1 | fvco3d 7016 |
. . . . 5
⊢ (𝜑 → ((𝑅 ∘ 𝑀)‘𝑋) = (𝑅‘(𝑀‘𝑋))) |
30 | 12, 29 | opeq12d 4889 |
. . . 4
⊢ (𝜑 → 〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉) |
31 | 30, 17 | oveq12d 7456 |
. . 3
⊢ (𝜑 → (〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌)) = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))) |
32 | 7, 24, 25, 15, 1, 2 | funcf2 17928 |
. . . 4
⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))) |
33 | 32, 4 | fvco3d 7016 |
. . 3
⊢ (𝜑 → ((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻) = (((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))) |
34 | | eqidd 2738 |
. . . 4
⊢ (𝜑 → (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
35 | 19, 20, 21, 3, 5, 1,
34 | fuco23 48908 |
. . 3
⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
36 | 31, 33, 35 | oveq123d 7459 |
. 2
⊢ (𝜑 → (((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) |
37 | 6, 28, 36 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋))) |