Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem3 Structured version   Visualization version   GIF version

Theorem fuco22natlem3 48911
Description: Combine fuco22natlem2 48910 with fuco23 48908. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco22natlem1.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco22natlem1.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem1.h (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
fuco22natlem2.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem3.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem3.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem3.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem3 (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)))

Proof of Theorem fuco22natlem3
StepHypRef Expression
1 fuco22natlem1.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
2 fuco22natlem1.y . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
3 fuco22natlem1.a . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
4 fuco22natlem1.h . . 3 (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
5 fuco22natlem2.b . . 3 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
61, 2, 3, 4, 5fuco22natlem2 48910 . 2 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
7 eqid 2737 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2737 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2737 . . . . . . . 8 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
109, 3natrcl2 48870 . . . . . . 7 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
117, 8, 10funcf1 17926 . . . . . 6 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1211, 1fvco3d 7016 . . . . 5 (𝜑 → ((𝐾𝐹)‘𝑋) = (𝐾‘(𝐹𝑋)))
1311, 2fvco3d 7016 . . . . 5 (𝜑 → ((𝐾𝐹)‘𝑌) = (𝐾‘(𝐹𝑌)))
1412, 13opeq12d 4889 . . . 4 (𝜑 → ⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩ = ⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩)
159, 3natrcl3 48871 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
167, 8, 15funcf1 17926 . . . . 5 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
1716, 2fvco3d 7016 . . . 4 (𝜑 → ((𝑅𝑀)‘𝑌) = (𝑅‘(𝑀𝑌)))
1814, 17oveq12d 7456 . . 3 (𝜑 → (⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌)) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌))))
19 fuco22natlem3.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
20 fuco22natlem3.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
21 fuco22natlem3.v . . . 4 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
22 eqidd 2738 . . . 4 (𝜑 → (⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌))) = (⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌))))
2319, 20, 21, 3, 5, 2, 22fuco23 48908 . . 3 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌) = ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))))
24 eqid 2737 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
25 eqid 2737 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
267, 24, 25, 10, 1, 2funcf2 17928 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
2726, 4fvco3d 7016 . . 3 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻)))
2818, 23, 27oveq123d 7459 . 2 (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))))
2916, 1fvco3d 7016 . . . . 5 (𝜑 → ((𝑅𝑀)‘𝑋) = (𝑅‘(𝑀𝑋)))
3012, 29opeq12d 4889 . . . 4 (𝜑 → ⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩ = ⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩)
3130, 17oveq12d 7456 . . 3 (𝜑 → (⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌)) = (⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌))))
327, 24, 25, 15, 1, 2funcf2 17928 . . . 4 (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
3332, 4fvco3d 7016 . . 3 (𝜑 → ((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻) = (((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻)))
34 eqidd 2738 . . . 4 (𝜑 → (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
3519, 20, 21, 3, 5, 1, 34fuco23 48908 . . 3 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
3631, 33, 35oveq123d 7459 . 2 (𝜑 → (((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
376, 28, 363eqtr4d 2787 1 (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640  ccom 5697  cfv 6569  (class class class)co 7438  Basecbs 17254  Hom chom 17318  compcco 17319   Nat cnat 18005  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-cat 17722  df-func 17918  df-cofu 17920  df-nat 18007  df-fuco 48886
This theorem is referenced by:  fuco22natlem  48912
  Copyright terms: Public domain W3C validator