Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem1 Structured version   Visualization version   GIF version

Theorem fuco22natlem1 49237
Description: Lemma for fuco22nat 49241. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco22natlem1.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco22natlem1.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem1.h (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
fuco22natlem1.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
fuco22natlem1 (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))

Proof of Theorem fuco22natlem1
StepHypRef Expression
1 eqid 2730 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2 fuco22natlem1.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
3 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2730 . . . 4 (comp‘𝐷) = (comp‘𝐷)
6 fuco22natlem1.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
7 fuco22natlem1.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
8 fuco22natlem1.h . . . 4 (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
91, 2, 3, 4, 5, 6, 7, 8nati 17926 . . 3 (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻)) = (((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋)))
109fveq2d 6869 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻))) = (((𝐹𝑋)𝐿(𝑀𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋))))
11 eqid 2730 . . 3 (Base‘𝐷) = (Base‘𝐷)
12 eqid 2730 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
13 eqid 2730 . . 3 (comp‘𝐸) = (comp‘𝐸)
14 fuco22natlem1.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
151, 2natrcl2 49128 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
163, 11, 15funcf1 17834 . . . 4 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1716, 6ffvelcdmd 7064 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
1816, 7ffvelcdmd 7064 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
191, 2natrcl3 49129 . . . . 5 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
203, 11, 19funcf1 17834 . . . 4 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
2120, 7ffvelcdmd 7064 . . 3 (𝜑 → (𝑀𝑌) ∈ (Base‘𝐷))
223, 4, 12, 15, 6, 7funcf2 17836 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
2322, 8ffvelcdmd 7064 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐻) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
241, 2, 3, 12, 7natcl 17924 . . 3 (𝜑 → (𝐴𝑌) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝑀𝑌)))
2511, 12, 5, 13, 14, 17, 18, 21, 23, 24funcco 17839 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻))) = ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))))
2620, 6ffvelcdmd 7064 . . 3 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
271, 2, 3, 12, 6natcl 17924 . . 3 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
283, 4, 12, 19, 6, 7funcf2 17836 . . . 4 (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
2928, 8ffvelcdmd 7064 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐻) ∈ ((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
3011, 12, 5, 13, 14, 17, 26, 21, 27, 29funcco 17839 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
3110, 25, 303eqtr3d 2773 1 (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   Nat cnat 17912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-func 17826  df-nat 17914
This theorem is referenced by:  fuco22natlem2  49238
  Copyright terms: Public domain W3C validator