Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem1 Structured version   Visualization version   GIF version

Theorem fuco22natlem1 48989
Description: Lemma for fuco22nat 48993. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco22natlem1.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco22natlem1.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem1.h (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
fuco22natlem1.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
fuco22natlem1 (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))

Proof of Theorem fuco22natlem1
StepHypRef Expression
1 eqid 2734 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2 fuco22natlem1.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
3 eqid 2734 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2734 . . . 4 (comp‘𝐷) = (comp‘𝐷)
6 fuco22natlem1.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
7 fuco22natlem1.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
8 fuco22natlem1.h . . . 4 (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
91, 2, 3, 4, 5, 6, 7, 8nati 17973 . . 3 (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻)) = (((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋)))
109fveq2d 6889 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻))) = (((𝐹𝑋)𝐿(𝑀𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋))))
11 eqid 2734 . . 3 (Base‘𝐷) = (Base‘𝐷)
12 eqid 2734 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
13 eqid 2734 . . 3 (comp‘𝐸) = (comp‘𝐸)
14 fuco22natlem1.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
151, 2natrcl2 48897 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
163, 11, 15funcf1 17881 . . . 4 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1716, 6ffvelcdmd 7084 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
1816, 7ffvelcdmd 7084 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
191, 2natrcl3 48898 . . . . 5 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
203, 11, 19funcf1 17881 . . . 4 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
2120, 7ffvelcdmd 7084 . . 3 (𝜑 → (𝑀𝑌) ∈ (Base‘𝐷))
223, 4, 12, 15, 6, 7funcf2 17883 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
2322, 8ffvelcdmd 7084 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐻) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
241, 2, 3, 12, 7natcl 17971 . . 3 (𝜑 → (𝐴𝑌) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝑀𝑌)))
2511, 12, 5, 13, 14, 17, 18, 21, 23, 24funcco 17886 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝑀𝑌))((𝑋𝐺𝑌)‘𝐻))) = ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))))
2620, 6ffvelcdmd 7084 . . 3 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
271, 2, 3, 12, 6natcl 17971 . . 3 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
283, 4, 12, 19, 6, 7funcf2 17883 . . . 4 (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
2928, 8ffvelcdmd 7084 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐻) ∈ ((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
3011, 12, 5, 13, 14, 17, 26, 21, 27, 29funcco 17886 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(⟨(𝐹𝑋), (𝑀𝑋)⟩(comp‘𝐷)(𝑀𝑌))(𝐴𝑋))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
3110, 25, 303eqtr3d 2777 1 (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4612   class class class wbr 5123  cfv 6540  (class class class)co 7412  Basecbs 17228  Hom chom 17283  compcco 17284   Func cfunc 17869   Nat cnat 17959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-map 8849  df-ixp 8919  df-func 17873  df-nat 17961
This theorem is referenced by:  fuco22natlem2  48990
  Copyright terms: Public domain W3C validator