Proof of Theorem fuco22natlem1
Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . 4
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
2 | | fuco22natlem1.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
3 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
4 | | eqid 2737 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
5 | | eqid 2737 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
6 | | fuco22natlem1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
7 | | fuco22natlem1.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
8 | | fuco22natlem1.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | nati 18019 |
. . 3
⊢ (𝜑 → ((𝐴‘𝑌)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝑀‘𝑌))((𝑋𝐺𝑌)‘𝐻)) = (((𝑋𝑁𝑌)‘𝐻)(〈(𝐹‘𝑋), (𝑀‘𝑋)〉(comp‘𝐷)(𝑀‘𝑌))(𝐴‘𝑋))) |
10 | 9 | fveq2d 6918 |
. 2
⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝑀‘𝑌))‘((𝐴‘𝑌)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝑀‘𝑌))((𝑋𝐺𝑌)‘𝐻))) = (((𝐹‘𝑋)𝐿(𝑀‘𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(〈(𝐹‘𝑋), (𝑀‘𝑋)〉(comp‘𝐷)(𝑀‘𝑌))(𝐴‘𝑋)))) |
11 | | eqid 2737 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
12 | | eqid 2737 |
. . 3
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
13 | | eqid 2737 |
. . 3
⊢
(comp‘𝐸) =
(comp‘𝐸) |
14 | | fuco22natlem1.k |
. . 3
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
15 | 1, 2 | natrcl2 48870 |
. . . . 5
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
16 | 3, 11, 15 | funcf1 17926 |
. . . 4
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
17 | 16, 6 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
18 | 16, 7 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
19 | 1, 2 | natrcl3 48871 |
. . . . 5
⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
20 | 3, 11, 19 | funcf1 17926 |
. . . 4
⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
21 | 20, 7 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → (𝑀‘𝑌) ∈ (Base‘𝐷)) |
22 | 3, 4, 12, 15, 6, 7 | funcf2 17928 |
. . . 4
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
23 | 22, 8 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐻) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
24 | 1, 2, 3, 12, 7 | natcl 18017 |
. . 3
⊢ (𝜑 → (𝐴‘𝑌) ∈ ((𝐹‘𝑌)(Hom ‘𝐷)(𝑀‘𝑌))) |
25 | 11, 12, 5, 13, 14, 17, 18, 21, 23, 24 | funcco 17931 |
. 2
⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝑀‘𝑌))‘((𝐴‘𝑌)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝑀‘𝑌))((𝑋𝐺𝑌)‘𝐻))) = ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻)))) |
26 | 20, 6 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝐷)) |
27 | 1, 2, 3, 12, 6 | natcl 18017 |
. . 3
⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))) |
28 | 3, 4, 12, 19, 6, 7 | funcf2 17928 |
. . . 4
⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))) |
29 | 28, 8 | ffvelcdmd 7112 |
. . 3
⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐻) ∈ ((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))) |
30 | 11, 12, 5, 13, 14, 17, 26, 21, 27, 29 | funcco 17931 |
. 2
⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝑀‘𝑌))‘(((𝑋𝑁𝑌)‘𝐻)(〈(𝐹‘𝑋), (𝑀‘𝑋)〉(comp‘𝐷)(𝑀‘𝑌))(𝐴‘𝑋))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
31 | 10, 25, 30 | 3eqtr3d 2785 |
1
⊢ (𝜑 → ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |